Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2011, Article ID 386503, 8 pages
http://dx.doi.org/10.1155/2011/386503
Research Article

Light-Emitting Polymer Nanocomposites

Center for Optical Materials Science and Engineering Technologies (COMSET) and The School of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA

Received 15 March 2011; Accepted 28 April 2011

Academic Editor: Hongmei Luo

Copyright © 2011 Kyle Gipson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. L. Wang, Z. W. Quan, P. Y. Jia et al., “A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles,” Chemistry of Materials, vol. 18, no. 8, pp. 2030–2037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. K. Sharma, R. Nass, and H. Schmidt, “Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(III) doped yttria,” Optical Materials, vol. 10, no. 2, pp. 161–169, 1998. View at Google Scholar · View at Scopus
  3. V. Bekiari and P. Lianos, “Multicolor emission from terpyridine-lanthanide ion complexes encapsulated in nanocomposite silica/poly(ethylene glycol) sol-gel matrices,” Journal of Luminescence, vol. 101, no. 1-2, pp. 135–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Brunet, O. Juanes, and J. Rodriguez-Ubis, “Supramolecularly organized lanthanide complexes for efficient metal excitation and luminescence as sensors in organic and biological applications,” Current Chemical Biology, vol. 1, no. 1, pp. 11–39, 2007. View at Google Scholar
  5. H. Jiu, L. Zhang, G. Liu, and T. Fan, “Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix,” Journal of Luminescence, vol. 129, no. 3, pp. 317–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Tang, G. L. Gu, and Q. Zhao, “Synthesis of Eu(III) and Tb(III) complexes with novel pyridine dicarboxamide derivatives and their luminescence properties,” Spectrochimica Acta—Part A, vol. 71, no. 2, pp. 371–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Wang, M. Li, C. Wang, J. Chang, H. Shi, and J. Lin, “Photoluminescence properties of LaF3: Eu3+ nanoparticles prepared by refluxing method,” Journal of Rare Earths, vol. 27, no. 1, pp. 33–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. G. Jacobsohn, K. B. Sprinkle, C. J. Kucera et al., “Synthesis, luminescence and scintillation of rare earth doped lanthanum fluoride nanoparticles,” Optical Materials, vol. 33, no. 2, pp. 136–140, 2010. View at Publisher · View at Google Scholar
  9. B. Kokuoz, J. R. DiMaio, C. J. Kucera, D. D. Evanoff, and J. Ballato, “Color kinetic nanoparticles,” Journal of the American Chemical Society, vol. 130, no. 37, pp. 12222–12223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Kokuoz, C. Kucera, J. R. DiMaio, and J. Ballato, “Organic—inorganic hybrid nanoparticles with enhanced rare-earth emissions,” Optical Materials, vol. 31, no. 9, pp. 1327–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Luo, X. Yu, W. Su et al., “Energy transfer in a ternary system composed of Tb(DBM)3Phen, Eu(DBM)3Phen, and poly(N-vinylcarbazole),” Journal of Materials Research, vol. 24, no. 10, pp. 3023–3031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Maji and K. S. Viswanathan, “Ligand-sensitized fluorescence of Eu3+ using naphthalene carboxylic acids as ligands,” Journal of Luminescence, vol. 128, no. 8, pp. 1255–1261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. I. G. Binev, B. A. Stamboliyska, and Y. I. Binev, “The infrared spectra and structure of acetylsalicylic acid (aspirin) and its oxyanion: an ab initio force field treatment,” Journal of Molecular Structure, vol. 378, no. 3, pp. 189–197, 1996. View at Google Scholar · View at Scopus
  14. L. C. Thompson, “Complexes of the rare earths. VIII. Picolinic acid,” Inorganic Chemistry, vol. 3, no. 9, pp. 1319–1321, 1964. View at Google Scholar · View at Scopus
  15. R. Dangtungee, J. Yun, and P. Supaphol, “Melt rheology and extrudate swell of calcium carbonate nanoparticle-filled isotactic polypropylene,” Polymer Testing, vol. 24, no. 1, pp. 2–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. M. Ellerbrook, Fabrication of fluorescent nanoparticle-polymer compoites for photoactive-based materials, M.S. thesis, 2010.
  17. L. Ravina, Everything You Want to Know about Coagulation & Flocculation, Zeta-Meter, Staunton, Va, USA, 4th edition, 1993.
  18. R. Bird, R. Armstrong, and O. Hassager, Eds., Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics, vol. 1, John Wiley & Sons, New York, NY, USA, 1977.
  19. H. Barnes, A Handbook of Elementary Rheology, vol. 1, The University of Wales Institute of Non-Newtonian Fluid Mechanics, Wales, UK, 2000.
  20. S. G. Hatzikiriakos, N. Rathod, and E. B. Muliawan, “The effect of nanoclays on the processibility of polyolefins,” Polymer Engineering and Science, vol. 45, no. 8, pp. 1098–1107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. E. Sliney, “Rare-earth fluorides and oxides—an exploratory study of their use as solid lubricants at temperatures to 1800°F (1000°C),” 1–26.
  22. Z. Zhang, L. Yu, W. Liu, and Q. Xue, “Effect of LaF3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system,” Tribology International, vol. 34, no. 2, pp. 83–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wang, S. Bo, L. Song, J. Hu, X. Liu, and Z. Zhen, “One-step synthesis of highly water-soluble LaF3:Ln3+ nanocrystals in methanol without using any ligands,” Nanotechnology, vol. 18, no. 46, article 465606, 2007. View at Publisher · View at Google Scholar
  24. J. Mezyk, D. Di Nuzzo, A. Mech, R. Tubino, and F. Meinardi, “Exciton-exciton annihilation in organic lanthanide complexes,” Journal of Chemical Physics, vol. 132, article 024504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Diaz-Garcia, S. F. De Avila, and M. G. Kuzyk, “Energy transfer from organics to rare-earth complexes,” Applied Physics Letters, vol. 81, no. 21, pp. 3924–3926, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Fairchild, “In color appearance models: CIECAM02 and beyond,” in Proceedings of the IS&T/SID 12th Color Imaging Conference, pp. 1–68, Scottsdale, Ariz, USA, November 2004.
  27. P. R. Selvin and J. E. Hearst, “Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 10024–10028, 1994. View at Publisher · View at Google Scholar · View at Scopus