Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2011 (2011), Article ID 648324, 7 pages
http://dx.doi.org/10.1155/2011/648324
Research Article

Structure and Properties of Multiwall Carbon Nanotubes/Polystyrene Composites Prepared via Coagulation Precipitation Technique

1Department of Physical Methods of Investigations, Boreskov Institute of Catalysis, Novosibirsk, Russia
2Physical Faculty, Novosibirsk State University, Novosibirsk 630090, Russia
3Department of Thermodynamic Investigations, Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russia
4Faculty of Radiophysics, National Research Tomsk State University, Tomsk 634050, Russia

Received 9 February 2011; Revised 25 April 2011; Accepted 28 April 2011

Academic Editor: Baoquan Sun

Copyright © 2011 I. N. Mazov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Xu, S. M. Anlage, L. Hu, and G. Gruner, “Microwave shielding of transparent and conducting single-walled carbon nanotube films,” Applied Physics Letters, vol. 90, no. 18, Article ID 183119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Odegard, S. J. V. Frankland, and T. S. Gates, “Effect of nanotube functionalization on the elastic properties of polyethylene nanotube composites,” AIAA Journal, vol. 43, no. 8, pp. 1828–1835, 2005. View at Google Scholar · View at Scopus
  3. Y. Yang, M. C. Gupta, and K. L. Dudley, “Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites,” Nanotechnology, vol. 18, no. 34, Article ID 345701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zhou, F. Pervin, L. Lewis, and S. Jeelani, “Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes,” Materials Science and Engineering A, vol. 475, no. 1-2, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S.-M. Yuen, C.-M. Ma, C.-Y. Chuang et al., “Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites,” Composites Science and Technology, vol. 68, no. 3-4, pp. 963–968, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Zhang, A. Dowden, H. Deng, M. Baxendale, and T. Peijs, “Conductive network formation in the melt of carbon nanotube/thermoplastic polyurethane composite,” Composites Science and Technology, vol. 69, no. 10, pp. 1499–1504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Xu and Z. Wang, “Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix,” Polymer, vol. 49, no. 1, pp. 330–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kanagaraj, F. R. Varanda, T. V. Zhil'tsova, M. S. A. Oliveira, and J. A. O. Simões, “Mechanical properties of high density polyethylene/carbon nanotube composites,” Composites Science and Technology, vol. 67, no. 15-16, pp. 3071–3077, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. McClory, T. McNally, M. Baxendale, P. Pötschke, W. Blau, and M. Ruether, “Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality,” European Polymer Journal, vol. 46, no. 5, pp. 854–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Slobodian, A. Lengálová, P. Sáha, and M. Šlouf, “Poly(methyl methacrylate)/multi-wall carbon nanotubes composites prepared by solvent cast technique: composites electrical percolation threshold,” Journal of Reinforced Plastics and Composites, vol. 26, no. 16, pp. 1705–1712, 2007. View at Publisher · View at Google Scholar
  11. E. N. Konyushenko, J. Stejskal, M. Trchová et al., “Multi-wall carbon nanotubes coated with polyaniline,” Polymer, vol. 47, no. 16, pp. 5715–5723, 2006. View at Publisher · View at Google Scholar
  12. S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, “Electrorheology of multiwalled carbon nanotube/ poly(methyl methacrylate) nanocomposites,” Macromolecular Rapid Communications, vol. 26, no. 19, pp. 1563–1566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. R. Tatro, L. M. Clayton, P. A. O. Muisener, A. M. Rao, and J. P. Harmon, “Probing multi-walled nanotube/poly(methyl methacrylate) composites with ionizing radiation,” Polymer, vol. 45, no. 6, pp. 1971–1979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Du, J. E. Fischer, and K. I. Winey, “Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability,” Journal of Polymer Science Part B, vol. 41, no. 24, pp. 3333–3338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. I. N. Mazov, V. Kuznetsov, S. Moseenkov et al., “Electromagnetic shielding properties of MWCNT/PMMA composites in Ka-band,” Physica Status Solidi (B), vol. 246, no. 11-12, pp. 2662–2666, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov et al., “Electrophysical properties of multiwalled carbon nanotubes with various diameters,” Physica Status Solidi (B), vol. 246, no. 11-12, pp. 2641–2644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Inam, H. Yan, M. J. Reece, and T. Peijs, “Dimethylformamide: an effective dispersant for making ceramic-carbon nanotube composites,” Nanotechnology, vol. 19, no. 19, Article ID 195710, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov et al., “Influence of surface layer conditions of multiwall carbon nanotubes on their electrophysical properties,” Diamond and Related Materials, vol. 19, pp. 964–967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Moisala, Q. Li, I. A. Kinloch, and A. H. Windle, “Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites,” Composites Science and Technology, vol. 66, no. 10, pp. 1285–1288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. W. K. Park, J. H. Kim, S. S. Lee, J. Kim, G. W. Lee, and M. Park, “Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly(methyl methacrylate) composites,” Macromolecular Research, vol. 13, no. 3, pp. 206–211, 2005. View at Google Scholar · View at Scopus
  21. J. Macutkevic, D. Seliuta, G. Valusis et al., “Dielectric properties of MWCNT based polymer composites close and below percolation threshold,” Physica Status Solidi (C), vol. 6, no. 12, pp. 2814–2816, 2009. View at Publisher · View at Google Scholar
  22. I. N. Mazov, V. Kuznetsov, S. Moseenkov et al., “Electromagnetic shielding properties of MWCNT/PMMA composites in Ka-band,” Physica Status Solidi (B), vol. 246, no. 11-12, pp. 2662–2666, 2009. View at Publisher · View at Google Scholar · View at Scopus