Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 196189, 7 pages
http://dx.doi.org/10.1155/2012/196189
Research Article

Uptake of Single-Walled Carbon Nanotubes Conjugated with DNA by Microvascular Endothelial Cells

1Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA
2Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897, USA
3Department of Biology, Missouri State University, Springfield, MO 65897, USA

Received 26 July 2011; Accepted 13 August 2011

Academic Editor: Dongwoo Khang

Copyright © 2012 Joseph Harvey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Liang and B. Chen, “A review on biomedical applications of single-walled carbon nanotubes,” Current Medicinal Chemistry, vol. 17, no. 1, pp. 10–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Liu, K. Chen, C. Davis et al., “Drug delivery with carbon nanotubes for in vivo cancer treatment,” Cancer Research, vol. 68, no. 16, pp. 6652–6660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Welsher, S. P. Sherlock, and H. Dai, “Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. 8943–8948, 2011. View at Publisher · View at Google Scholar
  4. Z. Liu, C. Davis, W. Cai, L. He, X. Chen, and H. Dai, “Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1410–1415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Mehta and A. B. Malik, “Signaling mechanisms regulating endothelial permeability,” Physiological Reviews, vol. 86, no. 1, pp. 279–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Albini, V. Mussi, A. Parodi et al., “Interactions of single-wall carbon nanotubes with endothelial cells,” Nanomedicine, vol. 6, no. 2, pp. 277–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. W. Cheng, Z. Q. Lin, B. F. Wei et al., “Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 4, pp. 564–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhiqing, X. Zhuge, C. Fuhuan et al., “ICAM-1 and VCAM-1 expression in rat aortic endothelial cells after single-walled carbon nanotube exposure,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8562–8574, 2010. View at Publisher · View at Google Scholar
  9. W. C. Aird, “Phenotypic heterogeneity of the endothelium: II. Representative vascular beds,” Circulation Research, vol. 100, no. 2, pp. 174–190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. Aird, “Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms,” Circulation Research, vol. 100, no. 2, pp. 158–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Dong, K. L. Joseph, C. M. Witkowski, and M. M. Craig, “Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants,” Nanotechnology, vol. 19, no. 25, Article ID 255702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Dong, C. M. Witkowski, M. M. Craig, M. M. Greenwade, and K. L. Joseph, “Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1517–1523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Wang, S. Bingaman, and V. H. Huxley, “Intrinsic sex-specific differences in microvascular endothelial cell phosphodiesterases,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 298, no. 4, pp. H1146–H1154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Wang and V. H. Huxley, “Adenosine A2A receptor modulation of juvenile female rat skeletal muscle microvessel permeability,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 291, no. 6, pp. H3094–H3105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. N. W. S. Kam, Z. Liu, and H. Dai, “Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway,” Angewandte Chemie—International Edition, vol. 45, no. 4, pp. 577–581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. V. Stan, “Endocytosis pathways in endothelium: how many?” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 290, no. 5, pp. L806–L808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. S. Ding, T. Dziubla, V. V. Shuvaev, S. Muro, and V. R. Muzykantov, “Advanced drug delivery systems that target the vascular endothelium,” Molecular Interventions, vol. 6, no. 2, pp. 98–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Oh, P. Borgström, H. Witkiewicz et al., “Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung,” Nature Biotechnology, vol. 25, no. 3, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Muro, X. Cui, C. Gajewski, J. C. Murciano, V. R. Muzykantov, and M. Koval, “Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress,” American Journal of Physiology—Cell Physiology, vol. 285, no. 5, pp. C1339–C1347, 2003. View at Google Scholar · View at Scopus
  20. S. Muro, M. Mateescu, C. Gajewski, M. Robinson, V. R. Muzykantov, and M. Koval, “Control of intracellular trafficking of ICAM-1-targeted nanocarriers by endothelial Na+/H+ exchanger proteins,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 290, no. 5, pp. L809–L817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Pogodin and V. A. Baulin, “Can a carbon nanotube pierce through a phospholipid bilayer?” ACS Nano, vol. 4, no. 9, pp. 5293–5300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. C. Michel and F. E. Curry, “Microvascular permeability,” Physiological Reviews, vol. 79, no. 3, pp. 703–761, 1999. View at Google Scholar · View at Scopus