Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 329318, 5 pages
http://dx.doi.org/10.1155/2012/329318
Research Article

The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

Received 17 February 2012; Revised 26 March 2012; Accepted 28 March 2012

Academic Editor: Kun-Lin Yang

Copyright © 2012 Min Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, vol. 3, no. 2, pp. 101–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Park, J. H. An, R. D. Piner et al., “Aqueous suspension and characterization of chemically modified graphene sheets,” Chemistry of Materials, vol. 20, no. 21, pp. 6592–6594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. X. B. Fan, W. C. Peng, Y. Li et al., “Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation,” Advanced Materials, vol. 20, no. 23, pp. 4490–4493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Park, J. H. An, I. Jung et al., “Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents,” Nano Letters, vol. 9, no. 4, pp. 1593–1597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. C. Chien and K. T. Jeng, “Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts,” Materials Chemistry and Physics, vol. 99, no. 1, pp. 80–87, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,” Carbon, vol. 48, no. 4, pp. 1124–1130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Patakfalvi, D. Diaz, P. Santiago-Jacinto, G. Rodriguez-Gattorno, and R. Sato-Berru, “Anchoring of silver nanoparticles on graphite and isomorphous lattices,” Journal of Physical Chemistry C, vol. 111, no. 14, pp. 5331–5336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Shirai, K. Igeta, and M. Arai, “Formation of platinum nanosheets between graphite layers,” Chemical Communications, no. 7, pp. 623–624, 2000. View at Google Scholar · View at Scopus
  9. S. K. Shaikhutdinov and F. J. C. Santos Aires, “Evolution of the rhodium colloid supported on graphite studied by atomic force microscopy in the tapping mode,” Langmuir, vol. 14, no. 13, pp. 3501–3505, 1998. View at Google Scholar · View at Scopus
  10. X. J. Yang, Y. Makita, Z. H. Liu, and K. Ooi, “Novel synthesis of layered graphite oxide-birnessite manganese oxide nanocomposite,” Chemistry of Materials, vol. 15, no. 6, pp. 1228–1231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of Au colloids and their interactions with functional amino acids,” Journal of Physical Chemistry B, vol. 108, no. 13, pp. 4046–4052, 2004. View at Google Scholar · View at Scopus
  12. J. Zhou, J. Ralston, R. Sedev, and D. A. Beattie, “Functionalized gold nanoparticles: synthesis, structure and colloid stability,” Journal of Colloid and Interface Science, vol. 331, no. 2, pp. 251–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Han, Y. Liu, and R. Guo, “Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for suzuki-miyaura cross-coupling reaction in water,” Journal of the American Chemical Society, vol. 131, no. 6, pp. 2060–2061, 2009. View at Google Scholar · View at Scopus
  14. A. P. Tuan, C. C. Byung, T. L. Kwon, and T. J. Yeon, “A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding,” Applied Surface Science, vol. 257, no. 8, pp. 3350–3357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Jasuja and V. Berry, “Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement,” ACS Nano, vol. 3, no. 8, pp. 2358–2366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. K. Kim, H. K. Na, and D. H. Min, “Influence of surface functionalization on the growth of gold nanostructures on graphene thin films,” Langmuir, vol. 26, no. 16, pp. 13065–13070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. A. Pham, S. M. Son, and Y. T. Jeong, “Water-dispersible multi-walled carbon nanotubes and novel hybrid nanostructures,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 40, no. 4, pp. 216–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Gingery and P. Bühlmann, “Formation of gold nanoparticles on multiwalled carbon nanotubes by thermal evaporation,” Carbon, vol. 46, no. 14, pp. 1966–1972, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Tello, G. Cardenas, P. Häberle, and R. A. Segura, “The synthesis of hybrid nanostructures of gold nanoparticles and carbon nanotubes and their transformation to solid carbon nanorods,” Carbon, vol. 46, no. 6, pp. 884–889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Y. Moon, T. Kusunose, S. I. Tanaka, and T. Sekino, “Easy synthesis of a nanostructured hybrid array consisting of gold nanoparticles and carbon nanotubes,” Carbon, vol. 47, no. 12, pp. 2924–2932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Zanella, E. V. Basiuk, P. Santiago et al., “Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes,” Journal of Physical Chemistry B, vol. 109, no. 34, pp. 16290–16295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Velamakanni, C. W. Magnuson, K. J. Ganesh et al., “Site-specific deposition of Au nanoparticles in CNT films by chemical bonding,” ACS Nano, vol. 4, no. 1, pp. 540–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. G. Kim, D. Ragupathy, A. I. Gopalan, and K. P. Lee, “Electrospun carbon nanotubes-gold nanoparticles embedded nanowebs: prosperous multi-functional nanomaterials,” Nanotechnology, vol. 21, no. 13, Article ID 134021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Letters, vol. 7, no. 11, pp. 3499–3503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482, 1998. View at Google Scholar · View at Scopus
  26. X. Zhou, X. Huang, X. Qi et al., “In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces,” Journal of Physical Chemistry C, vol. 113, no. 25, pp. 10842–10846, 2009. View at Publisher · View at Google Scholar · View at Scopus