Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 512738, 10 pages
http://dx.doi.org/10.1155/2012/512738
Review Article

Study of Carbon Nanotube-Substrate Interaction

Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil

Received 13 July 2011; Accepted 27 September 2011

Academic Editor: Angel Berenguer

Copyright © 2012 Jaqueline S. Soares and Ado Jorio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jorio and M. S. Dresselhaus, “Nanometrology links state-of-the-art academic research and ultimate industry needs for technological innovation,” Materials Research Society Bulletin, vol. 32, no. 12, pp. 988–993, 2011. View at Google Scholar · View at Scopus
  2. A. Hirsch, Fullerenes and Related Structures: Topics in Current Chemistry, Springer, New York, NY, USA, 1998.
  3. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, “Carbon nanotubes—The route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer, Berlin, Germany, 2008.
  5. P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nature Nanotechnology, vol. 2, no. 10, pp. 605–615, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nature Photonics, vol. 2, no. 6, pp. 341–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Steiner, M. Freitag, J. C. Tsang et al., “How does the substrate affect the Raman and excited state spectra of a carbon nanotube?” Applied Physics A, vol. 96, no. 2, pp. 271–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics Reports, vol. 409, no. 2, pp. 47–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hartschuh, H. N. Pedrosa, J. Peterson et al., “Single carbon nanotube optical spectroscopy,” ChemPhysChem, vol. 6, no. 4, pp. 577–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Hertel, A. Hagen, V. Talalaev et al., “Spectroscopy of single- and double-wall carbon nanotubes in different environments,” Nano Letters, vol. 5, no. 3, pp. 511–514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Zhang, J. Zhang, H. Son, J. Kong, and Z. Liu, “Substrate-induced Raman frequency variation for single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 49, pp. 17156–17157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Hertel, R. E. Walkup, and P. Avouris, “Deformation of carbon nanotubes by surface van der Waals forces,” Physical Review B, vol. 58, no. 20, pp. 13870–13873, 1998. View at Google Scholar · View at Scopus
  13. M. S. C. Mazzoni and H. Chacham, “Bandgap closure of a flattened semiconductor carbon nanotube: a first-principles study,” Applied Physics Letters, vol. 76, no. 12, pp. 1561–1563, 2000. View at Google Scholar · View at Scopus
  14. W. Orellana, R. H. Miwa, and A. Fazzio, “First-principles calculations of carbon nanotubes adsorbed on Si(001),” Physical Review Letters, vol. 91, no. 16, pp. 1668021–1668024, 2003. View at Google Scholar · View at Scopus
  15. C. Jiang, J. Zhao, H. A. Therese, M. Friedrich, and A. Mews, “Raman imaging and spectroscopy of heterogeneous individual carbon nanotubes,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8742–8745, 2003. View at Google Scholar · View at Scopus
  16. V. V. Tsukruk, H. Ko, and S. Peleshanko, “Nanotube surface arrays: weaving, bending, and assembling on patterned silicon,” Physical Review Letters, vol. 92, no. 6, pp. 655021–655024, 2004. View at Google Scholar · View at Scopus
  17. Y. H. Kim, M. J. Heben, and S. B. Zhang, “Nanotube wires on commensurate InAs surfaces: binding energies, band alignments, and bipolar doping by the surfaces,” Physical Review Letters, vol. 92, no. 17, p. 176102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Ismach, L. Segev, E. Wachtel, and E. Joselevich, “Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps,” Angewandte Chemie International Edition, vol. 43, no. 33, pp. 11554–11555, 2004. View at Google Scholar
  19. R. H. Miwa, W. Orellana, and A. Fazzio, “Substrate-dependent electronic properties of an armchair carbon nanotube adsorbed on H/Si(001),” Applied Physics Letters, vol. 86, no. 21, Article ID 213111, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Berber and A. Oshiyama, “Atomic and electronic structures of carbon nanotubes on Si(001) stepped surfaces,” Physical Review Letters, vol. 96, no. 10, Article ID 105505, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. G. W. Peng, A. C. H. Huan, L. Liu, and Y. P. Feng, “Structural and electronic properties of 4 Å carbon nanotubes on Si(001) surfaces,” Physical Review B, vol. 74, no. 23, p. 235416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. M. Albrecht and J. W. Lyding, “Local stabilization of single-walled carbon nanotubes on Si(100)-2 × 1:H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope,” Nanotechnology, vol. 18, no. 12, Article ID 125302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Geblinger, A. Ismach, and E. Joselevich, “Self-organized nanotube serpentines,” Nature Nanotechnology, vol. 3, no. 4, pp. 195–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. P. M. Barboza, A. P. Gomes, B. S. Archanjo et al., “Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electric force microscopy,” Physical Review Letters, vol. 100, no. 25, Article ID 256804, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. You, T. Yu, J. Kasim et al., “Visualization and investigation of Si-C covalent bonding of single carbon nanotube grown on silicon substrate,” Applied Physics Letters, vol. 93, no. 10, Article ID 103111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Jeon, C. Lee, J. Tang, J. Hone, and C. Nuckolis, “Growth of serpentine carbon nanotubes on quartz substrates and their electrical properties,” Nano Research, vol. 1, pp. 427–433, 2008. View at Google Scholar
  27. J. Huang and W. Choi, “Controlled growth and electrical characterization of bent single-walled carbon nanotubes,” Nanotechnology, vol. 19, no. 50, Article ID 505601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Yao, X. Dai, C. Feng et al., “Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process,” Advanced Materials, vol. 21, no. 41, pp. 4158–4162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Xiao, S. Dunham, P. Liu et al., “Alignment controlled growth of single-walled carbon nanotubes on quartz substrates,” Nano Letters, vol. 9, no. 12, pp. 4311–4319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Soares, A. P. M. Barboza, P. T. Araujo et al., “Modulating the electronic properties along carbon nanotubes via tube-substrate interaction,” Nano Letters, vol. 10, no. 12, pp. 5043–5048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Hertel, R. Martel, and P. Avouris, “Manipulation of individual carbon nanotubes and their interaction with surfaces,” Journal of Physical Chemistry B, vol. 102, no. 6, pp. 910–915, 1998. View at Google Scholar · View at Scopus
  32. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, and R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices,” Applied Surface Science, vol. 141, no. 3-4, pp. 201–209, 1999. View at Google Scholar · View at Scopus
  33. M. R. Falvo, G. J. Clary, R. M. Taylor et al., “Bending and buckling of carbon nanotubes under large strain,” Nature, vol. 389, no. 6651, pp. 582–584, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, Wiley-VCH, Weinheim, Germany, 2011.
  35. A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New Journal of Physics, vol. 5, pp. 139.1–139.17, 2003. View at Google Scholar · View at Scopus
  36. H. Son, Y. Hori, S. G. Chou et al., “Environment effects on the Raman spectra of individual single-wall carbon nanotubes: suspended and grown on polycrystalllne silicon,” Applied Physics Letters, vol. 85, no. 20, pp. 4744–4746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Zhang, H. Son, J. Zhang, M. S. Dresselhaus, J. Kong, and Z. Liu, “Raman spectra variation of partially suspended individual single-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 111, no. 5, pp. 1983–1987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. C. Meyer, M. Paillet, T. Michel et al., “Raman modes of index-identified freestanding single-walled carbon nanotubes,” Physical Review Letters, vol. 95, no. 21, Article ID 217401, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Kataura, Y. Kumazawa, Y. Maniwa et al., “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, no. 1–3, pp. 2555–2558, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. P. T. Araujo, I. O. Maciel, P. B. C. Pesce et al., “Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes,” Physical Review B, vol. 77, no. 24, Article ID 241403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. S. Soares, L. G. Cançado, E. B. Barros, and A. Jorio, “The Kataura plot for single wall carbon nanotubes on top of crystalline quartz,” Physica Status Solidi B, vol. 247, no. 11-12, pp. 2835–2837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Dresselhaus, G. Dresselhaus, and M. Hofmann, “The big picture of Raman scattering in carbon nanotubes,” Vibrational Spectroscopy, vol. 45, no. 2, pp. 71–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. P. T. Araujo, S. K. Doorn, S. Kilina et al., “Third and fourth optical transitions in semiconducting carbon nanotubes,” Physical Review Letters, vol. 98, no. 6, Article ID 067401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: resonance Raman spectroscopy,” Physical Review B, vol. 78, no. 16, Article ID 165408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. P. T. Araujo, P. B. C. Pesce, M. S. Dresselhaus, K. Sato, R. Saito, and A. Jorio, “Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes,” Physica E, vol. 42, no. 5, pp. 1251–1261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. L. D. Machado, S. B. Legoas, J. S. Soares et al., “On the formation of carbon nanotube serpentines: insights from multi-million atom molecular dynamics simulation,” Materials Research Society Symposium Proceedings, vol. 1284, pp. 79–84, 2011. View at Publisher · View at Google Scholar
  47. S. B. Cronin, A. K. Swan, M. S. Ünlü, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, “Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes,” Physical Review Letters, vol. 93, no. 16, p. 167401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Duan, H. Son, B. Gao et al., “Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes,” Nano Letters, vol. 7, no. 7, pp. 2116–2121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Gao, L. Jiang, X. Ling, J. Zhang, and Z. Liu, “Chirality-dependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain,” Journal of Physical Chemistry C, vol. 112, no. 51, pp. 20123–20125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Das, A. K. Sood, A. Govindaraj et al., “Doping in carbon nanotubes probed by Raman and transport measurements,” Physical Review Letters, vol. 99, no. 13, Article ID 136803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. O. Dubay, G. Kresse, and H. Kuzmany, “Phonon softening in metallic nanotubes by a Peierls-like mechanism,” Physical Review Letters, vol. 88, no. 23, pp. 2355061–2355064, 2002. View at Google Scholar · View at Scopus
  52. J. C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and P. Avouris, “Doping and phonon renormalization in carbon nanotubes,” Nature Nanotechnology, vol. 2, no. 11, pp. 725–730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, “Optical phonons in carbon nanotubes: kohn anomalies, Peierls distortions, and dynamic effects,” Physical Review B, vol. 75, no. 3, Article ID 035427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. I. O. MacIel, N. Anderson, M. A. Pimenta et al., “Electron and phonon renormalization near charged defects in carbon nanotubes,” Nature Materials, vol. 7, no. 11, pp. 878–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. S. Soares, E. B. Barros, N. Shadmi, E. Joselevich, and A. Jorio, “Raman study of nanotube-substrate interaction using single-wall carbon nanotubes grown on crystalline quartz,” Physica Status Solidi, vol. 248, no. 11, pp. 2536–2539, 2011. View at Publisher · View at Google Scholar
  56. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, G. G. Samsonidze, and R. Saito, “Science and applications of single-nanotube raman spectroscopy,” Journal of Nanoscience and Nanotechnology, vol. 3, no. 1-2, pp. 19–37, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. A. P. M. Barboza, A. P. Gomes, H. Chacham, and B. R. A. Neves, “Probing electric characteristics and sorting out metallic from semiconducting carbon nanotubes,” Carbon, vol. 48, no. 11, pp. 3287–3292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. K. Kwon, S. Saito, and D. Tománek, “Effect of intertube coupling on the electronic structure of carbon nanotube ropes,” Physical Review B, vol. 58, no. 20, pp. R13314–R13317, 1998. View at Google Scholar · View at Scopus
  59. A. M. Rao, J. Chen, E. Richter et al., “Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes,” Physical Review Letters, vol. 86, no. 17, pp. 3895–3898, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Reich, C. Thomsen, and P. Ordejón, “Electronic band structure of isolated and bundled carbon nanotubes,” Physical Review B, vol. 65, no. 15, p. 1554111, 2002. View at Google Scholar · View at Scopus
  61. F. Villalpando-Paez, H. Muramatsu, Y. A. Kim et al., “Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes,” Nanoscale, vol. 2, no. 3, pp. 406–411, 2010. View at Publisher · View at Google Scholar · View at Scopus