Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012, Article ID 687306, 8 pages
http://dx.doi.org/10.1155/2012/687306
Research Article

The Overall Effects of AlN Nanoparticle Addition to Hybrid Magnesium Alloy AZ91/ZK60A

1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
2CTO Office, Singapore Technologies Kinetics Ltd (ST Kinetics), 249 Jalan Boon Lay, Singapore 619523

Received 5 December 2011; Accepted 11 February 2012

Academic Editor: Hongmei Luo

Copyright © 2012 Muralidharan Paramsothy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Novelty, Ohio, USA, 1999.
  2. J. G. Kaufman, Introduction to Aluminium Alloys and Tempers, ASM International, Materials Park, Ohio, USA, 2000.
  3. E. F. Emley, Principles of Magnesium Technology, Pergamon Press, Oxford, UK, 1966.
  4. M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta, “Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles,” Materials Science and Engineering A, vol. 527, no. 1-2, pp. 162–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Paramsothy, S. F. Hassan, N. Q. Bau, N. Srikanth, and M. Gupta, “Selective enhancement of tensile/compressive strength and ductility of AZ31 magnesium alloy via nano-Al2O3 reinforcement integration method alteration,” Materials Science Forum, vol. 618, pp. 423–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Paramsothy, S. F. Hassan, N. Srikanth, and M. Gupta, “Simultaneous enhancement of tensile/compressive strength and ductility of magnesium alloy az31 using carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 2, pp. 956–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Carbon nanotube addition to simultaneously enhance strength and ductility of hybrid AZ31/AA5083 alloy,” Materials Sciences & Applications, vol. 2, pp. 20–29, 2011. View at Google Scholar
  8. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91,” Journal of Alloys and Compounds, vol. 509, no. 28, pp. 7572–7578, 2011. View at Publisher · View at Google Scholar
  9. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced mechanical response of hybrid alloy AZ31/AZ91 based on the addition of Si3N4 nanoparticles,” Materials Science and Engineering A, vol. 528, no. 21, pp. 6545–6551, 2011. View at Publisher · View at Google Scholar
  10. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “TiC nanoparticle addition to enhance the mechanical response of hybrid magnesium alloy,” Journal of Nanotechnology, vol. 2012, Article ID 401574, 2012. View at Publisher · View at Google Scholar
  11. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “The effective reinforcement of magnesium alloy ZK60A using Al2O3 nanoparticles,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 4855–4866, 2011. View at Publisher · View at Google Scholar
  12. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A,” Composites Part A, vol. 42, no. 2, pp. 180–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles,” Composites Part A, vol. 42, no. 12, pp. 2093–2100, 2011. View at Publisher · View at Google Scholar
  14. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta, “Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement,” Journal of Nanomaterials, vol. 2011, Article ID 642980, 2011. View at Publisher · View at Google Scholar
  15. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31,” Materials Science and Engineering A, vol. 433, no. 1-2, pp. 50–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Nanocrystallized magnesium alloy—uniform dispersion of C60 molecules,” Scripta Materialia, vol. 55, no. 11, pp. 1067–1070, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing,” Materials Science and Engineering A, vol. 419, no. 1-2, pp. 344–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Lee, J. C. Huang, and P. J. Hsieh, “Mg based nano-composites fabricated by friction stir processing,” Scripta Materialia, vol. 54, no. 7, pp. 1415–1420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites,” Materials Science and Technology, vol. 15, no. 10, pp. 1139–1146, 1999. View at Google Scholar · View at Scopus
  20. M. Gupta, M. O. Lai, and S. C. Lim, “Regarding the processing associated microstructure and mechanical properties improvement of an Al-4.5 Cu alloy,” Journal of Alloys and Compounds, vol. 260, no. 1-2, pp. 250–255, 1997. View at Google Scholar · View at Scopus
  21. L. M. Tham, M. Gupta, and L. Cheng, “Influence of processing parameters during disintegrated melt deposition processing on near net shape synthesis of aluminium based metal matrix composites,” Materials Science and Technology, vol. 15, no. 10, pp. 1139–1146, 1999. View at Google Scholar · View at Scopus
  22. B. Q. Han and D. C. Dunand, “Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids,” Materials Science and Engineering A, vol. 277, no. 1-2, pp. 297–304, 2000. View at Google Scholar · View at Scopus
  23. N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures, Vol. 3, Pergamon Materials Series, Pergamon, New York, NY, USA, 1999.
  24. J. D. Gilchrist, Extraction Metallurgy, Pergamon Press, New York, NY, USA, 3rd edition, 1989.
  25. M. Gupta, M. O. Lai, and C. Y. Soo, “Effect of type of processing on the micro structural features and mechanical properties of Al-Cu/SiC metal matrix composites,” Materials Science and Engineering A, vol. 210, no. 1-2, pp. 114–122, 1996. View at Google Scholar · View at Scopus
  26. M. De Cicco, H. Konishi, G. Cao et al., “Strong, ductile magnesium-zinc nanocomposites,” Metallurgical and Materials Transactions A, vol. 40, no. 12, pp. 3038–3045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. F. Hassan and M. Gupta, “Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg,” Journal of Alloys and Compounds, vol. 419, no. 1-2, pp. 84–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. F. Hassan and M. Gupta, “Effect of different types of nano-size oxide participates on microstructural and mechanical properties of elemental Mg,” Journal of Materials Science, vol. 41, no. 8, pp. 2229–2236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. F. Hassan and M. Gupta, “Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement,” Metallurgical and Materials Transactions A, vol. 36, no. 8, pp. 2253–2258, 2005. View at Google Scholar · View at Scopus
  30. Z. Száraz, Z. Trojanová, M. Cabbibo, and E. Evangelista, “Strengthening in a WE54 magnesium alloy containing SiC particles,” Materials Science and Engineering A, vol. 462, no. 1-2, pp. 225–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. H. Dai, Z. Ling, and Y. L. Bai, “Size-dependent inelastic behavior of particle-reinforced metal-matrix composites,” Composites Science and Technology, vol. 61, no. 8, pp. 1057–1063, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Hull and D. J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, UK, 4th edition, 2002.
  33. T. Laser, C. Hartig, M. R. Nürnberg, D. Letzig, and R. Bormann, “The influence of calcium and cerium mischmetal on the microstructural evolution of Mg—3Al—1Zn during extrusion and resulting mechanical properties,” Acta Materialia, vol. 56, no. 12, pp. 2791–2798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Bohlen, S. B. Yi, J. Swiostek, D. Letzig, H. G. Brokmeier, and K. U. Kainer, “Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31,” Scripta Materialia, vol. 53, no. 2, pp. 259–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. F. Hassan and M. Gupta, “Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing,” Journal of Alloys and Compounds, vol. 429, no. 1-2, pp. 176–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Namilae and N. Chandra, “Role of atomic scale interfaces in the compressive behavior of carbon nanotubes in composites,” Composites Science and Technology, vol. 66, no. 13, pp. 2030–2038, 2006. View at Publisher · View at Google Scholar · View at Scopus