Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012 (2012), Article ID 903761, 8 pages
http://dx.doi.org/10.1155/2012/903761
Research Article

Formation of Au-Silane Bonds

1Department of Applied Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
2Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
3The Unit for Nanocharacterization, The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received 8 January 2012; Revised 3 April 2012; Accepted 18 April 2012

Academic Editor: Ramón Antonio Zárate

Copyright © 2012 Shira Yochelis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Many intriguing aspects of molecular electronics are attributed to organic-inorganic interactions, yet charge transfer through such junctions still requires fundamental study. Recently, there is a growing interest in anchoring groups, which considered dominating the charge transport. With this respect, we choose to investigate self-assembly of disilane molecules sandwiched between gold surface and gold nanoparticles. These assemblies are found to exhibit covalent bonds not only between the anchoring Si groups and the gold surfaces but also in plane crosslinks that increase the monolayer stability. Finally, using scanning tunneling spectroscopy we demonstrate that the disilane molecules provide strong electrical coupling between the Au nanoparticles and a superconductor substrate.