Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2012 (2012), Article ID 954601, 9 pages
http://dx.doi.org/10.1155/2012/954601
Research Article

Biomolecular Triconjugates Formed between Gold, Protamine, and Nucleic Acid: Comparative Characterization on the Nanoscale

1Cell and Molecular Biology Program, Department of Biomedical Sciences, Missouri State University, Springfield, MO 65897, USA
2College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
3Department of Chemistry, Missouri State University, Springfield, MO 65897, USA
4Department of Physics Astronomy and Materials Science, Missouri State University, Springfield, MO 65897, USA
5School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
6George Warren Brown School of Social Work, Washington University in St. Louis, St. Louis, MO 63130, USA
7School of Medicine, University of Pittsburgh, Pittsburg, PA 15261, USA

Received 15 June 2011; Accepted 11 August 2011

Academic Editor: Dongwoo Khang

Copyright © 2012 Robert K. DeLong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Davis, J. Zuckerman, C. Choi et al., “Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles,” Nature, vol. 464, no. 7291, pp. 1067–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Bauman, S. D. Li, A. Yang, L. Huang, and R. Kole, “Anti-tumor activity of splice-switching oligonucleotides,” Nucleic Acids Research, vol. 38, no. 22, pp. 8348–8356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Garcia-Blanco, “Alternative splicing: therapeutic target and tool,” Progress in Molecular and Subcellular Biology, vol. 44, pp. 47–64, 2006. View at Google Scholar · View at Scopus
  4. E. Collins, J. C. Birchall, J. L. Williams, and M. Gumbleton, “Nuclear localisation and pDNA condensation in non-viral gene delivery,” Journal of Gene Medicine, vol. 9, no. 4, pp. 265–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Benimetskaya, N. Guzzo-Pernell, S. T. Liu, J. C. Lai, P. Miller, and C. A. Stein, “Protamine-fragment peptides fused to an SV40 nuclear localization signal deliver oligonucleotides that produce antisense effects in prostate and bladder carcinoma cells,” Bioconjugate Chemistry, vol. 13, no. 2, pp. 177–187, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Scheel, R. Teufel, J. Probst et al., “Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA,” European Journal of Immunology, vol. 35, no. 5, pp. 1557–1566, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Li, S. A. Pabit, S. P. Meisburger, and L. Pollack, “Double-stranded RNA resists condensation,” Physical Review Letters, vol. 106, no. 10, article 108101, 2011. View at Publisher · View at Google Scholar
  8. F. Reynolds, R. Weissleder, and L. Josephson, “Protamine as an efficient membrane-translocating peptide,” Bioconjugate Chemistry, vol. 16, no. 5, pp. 1240–1245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. K. DeLong, U. Akhtar, M. Sallee et al., “Characterization and performance of nucleic acid nanoparticles combined with protamine and gold,” Biomaterials, vol. 30, no. 32, pp. 6451–6459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Nakagawa, X. Ming, L. Huang, and R. L. Juliano, “Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands,” Journal of the American Chemical Society, vol. 132, no. 26, pp. 8848–8849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Resina, R. Kole, A. Travo, B. Lebleu, and A. R. Thierry, “Switching on transgene expression by correcting aberrant splicing using multi-targeting steric-blocking oligonucleotides,” Journal of Gene Medicine, vol. 9, no. 6, pp. 498–510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Kang, M. J. Cho, and R. Kole, “Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development,” Biochemistry, vol. 37, no. 18, pp. 6235–6239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. B. D. Chithrani, A. A. Ghazani, and W. C. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Letters, vol. 6, no. 4, pp. 662–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. R. Arvizo, O. R. Miranda, M. A. Thompson et al., “Effect of nanoparticle surface charge at the plasma membrane and beyond,” Nano Letters, vol. 10, no. 7, pp. 2543–2548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Reich, R. Ghirlando, and A. Minsky, “Secondary conformational polymorphism of nucleic acids as a possible functional link between cellular parameters and DNA packaging processes,” Biochemistry, vol. 30, no. 31, pp. 7828–7836, 1991. View at Google Scholar · View at Scopus
  16. F. P. Ottensmeyer, R. F. Whiting, and A. P. Korn, “Three dimensional structure of herring sperm protamine Y-I with the aid of dark field electron microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 12, pp. 4953–4955, 1975. View at Google Scholar · View at Scopus
  17. Z. Lin, C. Wang, X. Feng, M. Liu, J. Li, and C. Bai, “The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies,” Nucleic Acids Research, vol. 26, no. 13, pp. 3228–3234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. L. R. Brewer, M. Corzett, and R. Balhorn, “Protamine-induced condensation and decondensation of the same DNA molecule,” Science, vol. 286, no. 5437, pp. 120–123, 1999. View at Publisher · View at Google Scholar · View at Scopus