Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2014 (2014), Article ID 472132, 5 pages
http://dx.doi.org/10.1155/2014/472132
Research Article

Properties of Electrospun TiO2 Nanofibers

1GRF-CFUM, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
2CFUM, University of Minho, Campus of Gualtar, 4700-057 Braga, Portugal
3SEG-CEMUC Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra, Portugal

Received 6 February 2014; Accepted 19 May 2014; Published 3 June 2014

Academic Editor: Valery Khabashesku

Copyright © 2014 Bianca Caratão et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. S. Chronakis, “Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review,” Journal of Materials Processing Technology, vol. 167, no. 2-3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, pp. R89–R106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. P. K. Panda and S. Ramakrishna, “Electrospinning of alumina nanofibers using different precursors,” Journal of Materials Science, vol. 42, no. 6, pp. 2189–2193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, “Edge electrospinning for high throughput production of quality nanofibers,” Nanotechnology, vol. 22, no. 34, Article ID 345301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, “Nanostructured ceramics by electrospinning,” Journal of Applied Physics, vol. 102, no. 11, Article ID 111101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Watthanaarun, V. Pavarajarn, and P. Supaphol, “Titanium (IV) oxide nanofibers by combined sol-gel and electrospinning techniques: preliminary report on effects of preparation conditions and secondary metal dopant,” Science and Technology of Advanced Materials, vol. 6, no. 3-4, pp. 240–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, “Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell,” Nanotechnology, vol. 18, no. 36, Article ID 365709, pp. 1–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Nakata and A. Fujishima, “TiO2 photocatalysis: design and applications,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13, no. 3, pp. 169–189, 2012. View at Publisher · View at Google Scholar
  9. T. Picatonotto, D. Vione, and M. Eugenia Carlotti, “Effect of some additives used in the cosmetic field on the photocatalytic activity of rutile,” Journal of Dispersion Science and Technology, vol. 23, no. 6, pp. 845–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Boccaccini, J. J. Blaker, V. Maquet, W. Chung, R. Jérôme, and S. N. Nazhat, “Poly(D,L-lactide) (PDLLA) foams with TiO2 nanoparticles and PDLLA/TiO2-Bioglass foam composites for tissue engineering scaffolds,” Journal of Materials Science, vol. 41, no. 13, pp. 3999–4008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, “Potential of nanofiber matrix as tissue-engineering scaffolds,” Tissue Engineering, vol. 11, no. 1-2, pp. 101–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile,” Nanotechnology, vol. 19, no. 14, Article ID 145605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sangmanee and S. Maensiri, “Nanostructures and magnetic properties of cobalt ferrite (CoFe2O4) fabricated by electrospinning,” Applied Physics A, vol. 97, no. 1, pp. 167–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Tungprapa, T. Puangparn, M. Weerasombut et al., “Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter,” Cellulose, vol. 14, no. 6, pp. 563–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, and S. Seraphin, “Structural characterization and morphology of electrospun TiO2 nanofibers,” Materials Science and Engineering B, vol. 131, no. 1–3, pp. 147–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, “Vanadium pentoxide nanofibers by electrospinning,” Scripta Materialia, vol. 49, no. 6, pp. 577–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Maensiri and W. Nuansing, “Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning,” Materials Chemistry and Physics, vol. 99, no. 1, pp. 104–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J.-A. Park, J. Moon, S.-J. Lee, S. H. Kim, T. Zyung, and H. Y. Chu, “Structural, electrical and gas sensing properties of eletrospun TiO2 nanofibers,” Thin Solid Films, vol. 518, no. 22, pp. 6642–6645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Lee, C. S. Woo, B. K. Youn et al., “Bandgap modulation of TiO2 and its effect on the activity in photocatalytic oxidation of 2-isopropyl-6-methyl-4-pyrimidinol,” Topics in Catalysis, vol. 35, no. 3-4, pp. 255–260, 2005. View at Publisher · View at Google Scholar
  20. N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M. Z.-C. Hu, “Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions,” Industrial and Engineering Chemistry Research, vol. 38, no. 2, pp. 373–379, 1999. View at Google Scholar · View at Scopus
  21. S. Wiechers, P. Biehl, C. Luven et al., “Titanium dioxide particle size vs. sun protection performance,” Cosmetics & Toiletries, vol. 128, no. 5, pp. 2–6, 2013. View at Google Scholar
  22. C. Tekmen, A. Suslu, and U. Cocen, “Titania nanofibers prepared by electrospinning,” Materials Letters, vol. 62, no. 29, pp. 4470–4472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Cacciotti, A. Bianco, G. Pezzotti, and G. Gusmano, “Synthesis, thermal behaviour and luminescence properties of rare earth-doped titania nanofibers,” Chemical Engineering Journal, vol. 166, no. 2, pp. 751–764, 2011. View at Publisher · View at Google Scholar · View at Scopus