Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2014, Article ID 954206, 11 pages
http://dx.doi.org/10.1155/2014/954206
Review Article

Reviewing the Tannic Acid Mediated Synthesis of Metal Nanoparticles

Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India

Received 10 July 2013; Revised 22 November 2013; Accepted 27 February 2014; Published 11 March 2014

Academic Editor: Thomas Thundat

Copyright © 2014 Tufail Ahmad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Guo, Y. Song, G. Wang, and R. W. Murray, “Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters?” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2752–2757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Das and E. Marcili, “Bioinspired metal nanoparticle: synthesis, properties and application,” in Nanotechnology and Nanomaterials, chapter 11, pp. 253–278, InTech, 2011. View at Google Scholar
  4. P. S. Prasoon, “Synthesis and characterization of colloidal gold nanoparticles suspension using liquid soaps,” Chemistry and Materials Research, vol. 2, no. 1, pp. 82–87, 2012. View at Google Scholar
  5. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145–181, 1857. View at Publisher · View at Google Scholar
  6. E. Roduner, “Size matters: why nanomaterials are different,” Chemical Society Reviews, vol. 35, no. 7, pp. 583–592, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Zabetakis, W. E. Ghann, S. Kumar, and M.-C. Daniel, “Effect of high gold salt concentrations on the size and polydispersity of gold nanoparticles prepared by an extended Turkevich-Frens method,” Gold Bulletin, vol. 45, no. 4, pp. 203–211, 2012. View at Google Scholar
  8. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” Journal of the American Chemical Society, vol. 129, no. 45, pp. 13939–13948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. J. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” Journal of Physical Chemistry B, vol. 110, no. 32, pp. 15700–15707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Korbekandi and S. Iravani, “Silver nanoparticles,” in The Delivery of Nanoparticles, A. A. Hashim, Ed., InTech, 2012, http://www.intechopen.com/books/the-delivery-ofnanoparticles/silver-nanoparticles. View at Google Scholar
  11. S. K. Sivaraman, S. Kumar, and V. Santhanam, “Room-temperature synthesis of gold nanoparticles—size-control by slow addition,” Gold Bulletin, vol. 43, no. 4, pp. 275–286, 2010. View at Google Scholar · View at Scopus
  12. W. Ostwald, An Introduction to Theoretical and Applied Colloid, John Wiley & Sons, New York, NY, USA, 1917.
  13. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, vol. 11, pp. 55–75, 1951. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Mülpfordt, “The preparation of colloidal gold particles using tannic acid as an additional reducing agent,” Experientia, vol. 38, no. 9, pp. 1127–1128, 1982. View at Google Scholar · View at Scopus
  15. J. W. Slot and H. J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry,” European Journal of Cell Biology, vol. 38, no. 1, pp. 87–93, 1985. View at Google Scholar · View at Scopus
  16. S. K. Sivaraman, I. Elango, S. Kumar, and V. Santhanam, “A green protocol for room temperature synthesis of silver nanoparticles in seconds,” Current Science, vol. 97, no. 7, pp. 1055–1059, 2009. View at Google Scholar · View at Scopus
  17. X. Tian, W. Wang, and G. Cao, “A facile aqueous-phase route for the synthesis of silver nanoplates,” Materials Letters, vol. 61, no. 1, pp. 130–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Aswathy Aromal and D. Philip, “Facile one-pot synthesis of gold nanoparticles using tannic acid and its application in catalysis,” Physica E, vol. 44, no. 7-8, pp. 1692–1696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Gülçin, Z. Huyut, M. Elmastaş, and H. Y. Aboul-Enein, “Radical scavenging and antioxidant activity of tannic acid,” Arabian Journal of Chemistry, vol. 3, no. 1, pp. 43–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. E. Vance and R. W. Teel, “Effect of tannic acid on rat liver S9 mediated mutagenesis, metabolism and DNA binding of benzo[a]pyrene,” Cancer Letters, vol. 47, no. 1-2, pp. 37–44, 1989. View at Google Scholar · View at Scopus
  21. W. A. Khan, Z. Y. Wang, M. Athar, D. R. Bickers, and H. Mukhtar, “Inhibition of the skin tumorigenicity of (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10- tetrahydrobenzo[a]pyrene by tannic acid, green tea polyphenols and quercetin in Sencar mice,” Cancer Letters, vol. 42, no. 1-2, pp. 7–12, 1988. View at Google Scholar · View at Scopus
  22. X. Tian, W. Wang, and G. Cao, “A facile aqueous-phase route for the synthesis of silver nanoplates,” Materials Letters, vol. 61, no. 1, pp. 130–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. H. Cruz, J. M. Diaz-Cruz, C. Arino, and M. Esteban, “Heavy metal binding by tannic acid: a voltammetric study,” Electroanalysis, vol. 12, no. 14, pp. 1130–1137, 2000. View at Google Scholar
  24. W. Bors, L. Y. Foo, N. Hertkorn, C. Michel, and K. Stettmaier, “Chemical studies of proanthocyanidins and hydrolyzable tannins,” Antioxidants and Redox Signaling, vol. 3, no. 6, pp. 995–1008, 2001. View at Google Scholar · View at Scopus
  25. G. A. Martinez-Castanon, N. Niño-Martínez, F. Martínez-Gutierrez, J. R. Martínez-Mendoza, and F. Ruiz, “Synthesis and antibacterial activity of silver nanoparticles with different sizes,” Journal of Nanoparticle Research, vol. 10, no. 8, pp. 1343–1348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Liu, G. Qin, P. Raveendran, and Y. Ikushima, “Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals,” Chemistry A, vol. 12, no. 8, pp. 2131–2138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” Journal of Physical Chemistry B, vol. 105, no. 22, pp. 5114–5120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Raffi, A. K. Rumaiz, M. M. Hasan, and S. I. Shah, “Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation,” Journal of Materials Research, vol. 22, no. 12, pp. 3378–3384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. J. Rosemary and T. Pradeep, “Solvothermal synthesis of silver nanoparticles from thiolates,” Journal of Colloid and Interface Science, vol. 268, no. 1, pp. 81–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. N. K. Chaki, S. G. Sudrik, H. R. Sonawane, and K. Vijayamohanan, “Single phase preparation of monodispersed silver nanoclusters using a unique electron transfer and cluster stabilising agent, triethylamine,” Chemical Communications, no. 1, pp. 76–77, 2002. View at Google Scholar · View at Scopus
  31. S. Shukla and S. Seal, “Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy,” Nanostructured Materials, vol. 11, no. 8, pp. 1181–1193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. P. T. Anstas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, NY, USA, 1998.
  33. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Pérez-Tijerina, M. Gracia Pinilla, S. Mejía-Rosales, U. Ortiz-Méndez, A. Torres, and M. José-Yacamán, “Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation,” Faraday Discussions, vol. 138, pp. 353–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. I.-S. Kang, M.-H. Kang, E. Lee, H.-S. Seo, and C. W. Ahn, “Facile, hetero-sized nanocluster array fabrication for investigating the nanostructure-dependence of nonvolatile memory characteristics,” Nanotechnology, vol. 22, no. 25, Article ID 254018, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Gacoin, “Sol-gel transition in CdS colloids,” Journal of Materials Chemistry, vol. 7, no. 6, pp. 859–860, 1997. View at Google Scholar · View at Scopus
  37. Y. Yuan, J. H. Fendler, and I. Cabasso, “Photoelectron transfer mediated by size-quantized CdS particles in polymer-blend membranes,” Chemistry of Materials, vol. 4, no. 2, pp. 312–318, 1992. View at Google Scholar · View at Scopus
  38. B. L. Justus, R. J. Tonucci, and A. D. Berry, “Nonlinear optical properties of quantum-confined GaAs nanocrystals in Vycor glass,” Applied Physics Letters, vol. 61, no. 26, pp. 3151–3153, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Sankaran, J. Yue, R. E. Cohen, R. R. Schrock, and R. J. Silbey, “Synthesis of zinc sulfide clusters and zinc particles within microphase-separated domains of organometallic block copolymers,” Chemistry of Materials, vol. 5, no. 8, pp. 1133–1142, 1993. View at Google Scholar · View at Scopus
  40. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, “Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2,” Applied Catalysis B, vol. 69, no. 3-4, pp. 138–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. G. Yang, C. H. Sun, S. Z. Qiao et al., “Anatase TiO2 single crystals with a large percentage of reactive facets,” Nature, vol. 453, no. 7195, pp. 638–641, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. R. Tao, S. Habas, and P. Yang, “Shape control of colloidal metal nanocrystals,” Small, vol. 4, no. 3, pp. 310–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Frens, “Particle size and sol stability in metal colloids,” Colloid and Polymer Science, vol. 250, no. 7, pp. 736–741, 1972. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” Journal of the Chemical Society, Chemical Communications, no. 7, pp. 801–802, 1994. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Senapati, Biosynthesis and Immobilization of Nanoparticles and Their Applications, University of Pune, Maharashtra, India, 2005.
  46. T. Klaus-Joerger, R. Joerger, E. Olsson, and C.-G. Granqvist, “Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science,” Trends in Biotechnology, vol. 19, no. 1, pp. 15–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Cataldo, O. Ursini, and G. Angelini, “A green synthesis of colloidal silver nanoparticles and their reaction with ozone,” European Chemical Bulletin, vol. 2, no. 10, pp. 700–705, 2013. View at Google Scholar
  48. L. Sun, Z. J. Zhang, Z. S. Wu, and H. X. Dang, “Synthesis and characterization of DDP coated Ag nanoparticles,” Materials Science and Engineering A, vol. 379, no. 1-2, pp. 378–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S.-Y. Zhao, S.-H. Chen, D.-G. Li, X.-G. Yang, and H.-Y. Ma, “A convenient phase transfer route for Ag nanoparticles,” Physica E, vol. 23, no. 1-2, pp. 92–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Bulut and M. Özacar, “Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin,” Industrial and Engineering Chemistry Research, vol. 48, no. 12, pp. 5686–5690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. I. Călinescu, M. Pătraşcu, A. I. Gavrilă, A. Trifan, and C. Boscornea, “Synthesis and characterisation of silver nanoparticles in the presence of PVA and tannic acid,” U.P.B. Scientific Bulletin B, vol. 73, no. 4, pp. 3–10, 2011. View at Google Scholar
  52. N. Gupta, A. Panwar, R. Kumar, S. K. Sharma, R. K. Sharma, and V. Agrawal, “Green synthesis of silver nanoparticles and their antibacterial activity against multi-drug resistant human pathogens,” Advanced Science, Engineering and Medicine, vol. 5, no. 4, pp. 355–361, 2013. View at Google Scholar
  53. J. Dobias and R. Bernier-Latmani, “Silver release from silver nanoparticles in natural waters,” Environmental Science & Technology, vol. 47, pp. 4140–4146, 2013. View at Google Scholar
  54. M. Bayat and M. Khatibzadeh, “A review on green methods for synthesis of silver nano particles,” in Proceedings of the International Conference Nanomaterials: Applications and Properties, vol. 2, no. 2, p. 6, 2013.
  55. L. Rainville, M.-C. Dorais, and D. Boudreau, “Controlled synthesis of low polydispersity Ag@SiO2 core-shell nanoparticles for use in plasmonic applications,” RSC Advances, vol. 3, pp. 13953–13960, 2013. View at Google Scholar
  56. S. Trudel, “Unexpected magnetism in gold nanostructures: making gold even more attractive,” Gold Bulletin, vol. 44, no. 1, pp. 3–13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Pradeep and A. Anshup, “Noble metal nanoparticles for water purification: a critical review,” Thin Solid Films, vol. 517, no. 24, pp. 6441–6478, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Cai, T. Gao, H. Hong, and J. Sun, “Applications of gold nanoparticles in cancer nanotechnology,” Nanotechnology Science and Application, vol. 1, pp. 17–32, 2008. View at Google Scholar
  59. D. Philip, K. G. Gopchandran, C. Unni, and K. M. Nissamudeen, “Synthesis, characterization and SERS activity of Au-Ag nanorods,” Spectrochimica Acta A, vol. 70, no. 4, pp. 780–784, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. G. C. Hadjipanayis and R. W. Seigel, Nanophase Materials: Synthesis, Properties and Applications, Kluwer Academic, Dodrecht, The Netherlands, 1994.
  61. M. K. Corbierre and R. B. Lennox, “Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(I)-thiolates,” Chemistry of Materials, vol. 17, no. 23, pp. 5691–5696, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. N. N. Long, L. V. Vu, C. D. Kiem et al., “Synthesis and optical properties of colloidal gold nanoparticles,” Journal of Physics, vol. 187, Article ID 012026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Das, S. S. Nath, and R. Bhattacharjee, “Optical properties of linoleic acid protected gold nanoparticles,” Journal of Nanomaterials, vol. 2011, Article ID 630834, 4 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Y. Moon, T. Kusunose, and T. Sekino, “CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution,” Materials Letters, vol. 63, no. 23, pp. 2038–2040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Alshammari, A. Köckritz, V. N. Kalevaru, A. Bagabas, and A. Martin, “Influence of single use and combination of reductants on the size, morphology and growth steps of gold nanoparticles in colloidal mixture,” Open Journal of Physical Chemistry, vol. 2, no. 4, pp. 252–261, 2012. View at Google Scholar
  66. D. Mahl, J. Diendorf, S. Ristig et al., “Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action,” Journal of Nanoparticle Research, vol. 14, no. 1153, pp. 1–13, 2012. View at Google Scholar
  67. T. Ahmad and W. Khan, “Size variation of gold nanoparticles synthesized using tannic acid in response to higher chloroauric acid concentrations,” World Journal of Nano Science and Engineering, vol. 3, no. 3, pp. 62–68, 2013. View at Google Scholar
  68. A. Sedighi and P. C. H. Li, “Gold nanoparticle assists SNP detection at room temperature in the nanoBioArray chip,” International Journal of Materials Science and Engineering, vol. 1, no. 1, pp. 45–49, 2013. View at Google Scholar
  69. Y. Zhang, G. Chang, S. Liu, W. Lu, J. Tian, and X. Sun, “A new preparation of Au nanoplates and their application for glucose sensing,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 344–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. E. A. Untener, K. K. Comfort, E. I. Maurer, C. M. Grabinski, D. A. Comfort, and S. M. Hussain, “Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells,” ACS Applied Materials & Interfaces, vol. 5, no. 17, pp. 8366–8373, 2013. View at Google Scholar
  71. J. Cookson, “The preparation of palladium nanoparticles,” Platinum Metals Review, vol. 56, no. 2, pp. 83–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. M. M. Kumari, S. A. Aromal, and D. Philip, “Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity,” Spectrochimica Acta A, vol. 103, pp. 130–133, 2013. View at Google Scholar
  73. S. Cheong, J. D. Watt, and R. D. Tilley, “Shape control of platinum and palladium nanoparticles for catalysis,” Nanoscale, vol. 2, no. 10, pp. 2045–2053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. H. Chen, G. Wei, A. Ispas, S. G. Hickey, and A. Eychmüller, “Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis,” Journal of Physical Chemistry C, vol. 114, no. 50, pp. 21976–21981, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. K. R. Gopidas, J. K. Whitesell, and M. A. Fox, “Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Letters, vol. 3, no. 12, pp. 1757–1760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Cherevko, N. Kulyk, J. Fu, and C.-H. Chung, “Hydrogen sensing performance of electrodeposited conoidal palladium nanowire and nanotube arrays,” Sensors and Actuators B, vol. 136, no. 2, pp. 388–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Tobiška, O. Hugon, A. Trouillet, and H. Gagnaire, “An integrated optic hydrogen sensor based on SPR on palladium,” Sensors and Actuators B, vol. 74, no. 1–3, pp. 168–172, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser and Photonics Reviews, vol. 4, no. 6, pp. 795–808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Yamauchi, R. Ikeda, H. Kitagawa, and M. Takata, “Nanosize effects on hydrogen storage in palladium,” Journal of Physical Chemistry C, vol. 112, no. 9, pp. 3294–3299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. S.-U. Rather, R. Zacharia, S. W. Hwang, M.-U. Naik, and K. S. Nahm, “Hydrogen uptake of palladium-embedded MWCNTs produced by impregnation and condensed phase reduction method,” Chemical Physics Letters, vol. 441, no. 4–6, pp. 261–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Tristany, J. Courmarcel, P. Dieudonné et al., “Palladium nanoparticles entrapped in heavily fluorinated compounds,” Chemistry of Materials, vol. 18, no. 3, pp. 716–722, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Xiong, J. Chen, B. Wiley, Y. Xia, Y. Yin, and Z.-Y. Li, “Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process,” Nano Letters, vol. 5, no. 7, pp. 1237–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Sartre, M. Phaner, L. Porte, and G. N. Sauvion, “STM and ESCA studies of palladium particles deposited on a HOPG surface,” Applied Surface Science, vol. 70-71, no. 1, pp. 402–406, 1993. View at Google Scholar · View at Scopus
  84. S. U. Son, Y. Jang, K. Y. Yoon, E. Kang, and T. Hyeon, “Facile synthesis of various phosphine-stabilized monodisperse palladium nanoparticles through the understanding of coordination chemistry of the nanoparticles,” Nano Letters, vol. 4, no. 6, pp. 1147–1151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. S.-W. Kim, J. Park, Y. Jang et al., “Synthesis of monodisperse palladium nanoparticles,” Nano Letters, vol. 3, no. 9, pp. 1289–1291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Xiong, J. Chen, B. Wiley, Y. Xia, S. Aloni, and Y. Yin, “Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size,” Journal of the American Chemical Society, vol. 127, no. 20, pp. 7332–7333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Mohanpuria, N. K. Rana, and S. K. Yadav, “Biosynthesis of nanoparticles: technological concepts and future applications,” Journal of Nanoparticle Research, vol. 10, no. 3, pp. 507–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Gericke and A. Pinches, “Biological synthesis of metal nanoparticles,” Hydrometallurgy, vol. 83, no. 1–4, pp. 132–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Karousis, G.-E. Tsotsou, F. Evangelista, P. Rudolf, N. Ragoussis, and N. Tagmatarchis, “Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity,” Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13463–13469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Devarajan, P. Bera, and S. Sampath, “Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates,” Journal of Colloid and Interface Science, vol. 290, no. 1, pp. 117–129, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Sanchez-Mendieta and A. R. Vilchis-Nestor, “Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts,” in Noble Metals, Y.-H. Su, Ed., chapter 18, pp. 392–408, Intech, 2012. View at Google Scholar
  92. R. Herrera-Becerra, J. L. Rius, and C. Zorrilla, “Tannin biosynthesis of iron oxide nanoparticles,” Applied Physics A, vol. 100, no. 2, pp. 453–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Finlay, G. Gunawan, A. S. Biris et al., “Novel microwave-assisted synthesis of renewable-resource based carbon-magnetite nanocomposites,” Journal of Wood Chemistry and Technology, vol. 32, no. 3, pp. 268–278, 2012. View at Google Scholar
  94. G. Chang, Y. Luo, X. Qin et al., “Synthesis of Pt nanoparticles decorated 1, 5-diaminoanthraquinone nanofibers and their application toward catalytic reduction of 4-nitrophenol,” Journal of Nanoscience and Nanotechnology, vol. 12, no. 9, pp. 7075–7080, 2012. View at Google Scholar
  95. X. Huang, L. Li, X. Liao, and B. Shi, “Preparation of platinum nanoparticles supported on bayberry tannin grafted silica bead and its catalytic properties in hydrogenation,” Journal of Molecular Catalysis A, vol. 320, no. 1-2, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Shah, L.-U. Latif-Ur-Rahman, R. Qureshi, and Z.-U. Zia-Ur-Rehman, “Synthesis, characterization and applications of bimetallic (Au-Ag, Au-Pt, Au-Ru) alloy nanoparticles,” Reviews on Advanced Materials Science, vol. 30, no. 2, pp. 133–149, 2012. View at Google Scholar · View at Scopus
  97. W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Facile synthesis of novel Ni(II)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing,” Analyst, vol. 138, no. 2, pp. 429–433, 2013. View at Google Scholar