Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2009, Article ID 305420, 6 pages
http://dx.doi.org/10.1155/2009/305420
Review Article

MicroRNAs as New Players for Diagnosis, Prognosis, and Therapeutic Targets in Breast Cancer

1Department of Surgery, The University of Hong Kong, Hong Kong
2Department of Molecular Pathology, Hong Kong Sanatorium & Hospital, Hong Kong

Received 1 February 2009; Revised 7 May 2009; Accepted 3 June 2009

Academic Editor: Katherine Crew

Copyright © 2009 Enders K. O. Ng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. L. He, J. M. Thomson, M. T. Hemann et al., “A microRNA polycistron as a potential human oncogene,” Nature, vol. 435, no. 7043, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004. View at Publisher · View at Google Scholar · View at PubMed
  4. C.-Z. Chen, “MicroRNAs as oncogenes and tumor suppressors,” The New England Journal of Medicine, vol. 353, pp. 1768–1771, 2005. View at Google Scholar
  5. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at PubMed
  6. A. Cimmino, G. A. Calin, M. Fabbri et al., “miR-15 and miR-16 induce apoptosis by targeting BCL2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13944–13949, 2005. View at Publisher · View at Google Scholar · View at PubMed
  7. K. A. O'Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang, and J. T. Mendell, “c-Myc-regulated microRNAs modulate E2F1 expression,” Nature, vol. 435, no. 7043, pp. 839–843, 2005. View at Publisher · View at Google Scholar · View at PubMed
  8. O. A. Kent and J. T. Mendell, “A small piece in the cancer puzzle: MicroRNAs as tumor suppressors and oncogenes,” Oncogene, vol. 25, no. 46, pp. 6188–6196, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. M. V. Iorio, M. Ferracin, C.-G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005. View at Publisher · View at Google Scholar · View at PubMed
  10. S. Volinia, G. A. Calin, C.-G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at PubMed
  12. C. Blenkiron, L. D. Goldstein, N. P. Thorne et al., “MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype,” Genome Biology, vol. 8, no. 10, article R214, 2007. View at Publisher · View at Google Scholar · View at PubMed
  13. J. A. Foekens, A. M. Sieuwerts, M. Smid et al., “Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13021–13026, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. Z. Lu, M. Liu, V. Stribinskis et al., “MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene,” Oncogene, vol. 27, no. 31, pp. 4373–4379, 2008. View at Publisher · View at Google Scholar · View at PubMed
  15. M.-L. Si, S. Zhu, H. Wu, Z. Lu, F. Wu, and Y.-Y. Mo, “miR-21-mediated tumor growth,” Oncogene, vol. 26, no. 19, pp. 2799–2803, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. L.-X. Yan, X.-F. Huang, Q. Shao et al., “MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis,” RNA, vol. 14, no. 11, pp. 2348–2360, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. S. Zhu, M.-L. Si, H. Wu, and Y.-Y. Mo, “MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1),” The Journal of Biological Chemistry, vol. 282, no. 19, pp. 14328–14336, 2007. View at Publisher · View at Google Scholar · View at PubMed
  18. N. S. Wickramasinghe, T. T. Manavalan, S. M. Dougherty, K. A. Riggs, Y. Li, and C. M. Klinge, “Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells,” Nucleic Acids Research, vol. 37, no. 8, pp. 2584–2595, 2009. View at Publisher · View at Google Scholar · View at PubMed
  19. L. B. Frankel, N. R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, and A. H. Lund, “Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells,” The Journal of Biological Chemistry, vol. 283, no. 2, pp. 1026–1033, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007. View at Publisher · View at Google Scholar · View at PubMed
  21. S. U. Mertens-Talcott, S. Chintharlapalli, X. Li, and S. Safe, “The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells,” Cancer Research, vol. 67, no. 22, pp. 11001–11011, 2007. View at Publisher · View at Google Scholar · View at PubMed
  22. N. Kondo, T. Toyama, H. Sugiura, Y. Fujii, and H. Yamashita, “miR-206 expression is down-regulated in estrogen receptor α-positive human breast cancer,” Cancer Research, vol. 68, no. 13, pp. 5004–5008, 2008. View at Publisher · View at Google Scholar · View at PubMed
  23. B. D. Adams, H. Furneaux, and B. A. White, “The microribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines,” Molecular Endocrinology, vol. 21, pp. 1132–1147, 2007. View at Google Scholar
  24. A. Hossain, M. T. Kuo, and G. F. Saunders, “Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA,” Molecular and Cellular Biology, vol. 26, no. 21, pp. 8191–8201, 2006. View at Publisher · View at Google Scholar · View at PubMed
  25. G. K. Scott, A. Goga, D. Bhaumik, C. E. Berger, C. S. Sullivan, and C. C. Benz, “Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b,” The Journal of Biological Chemistry, vol. 282, no. 2, pp. 1479–1486, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. F. Yu, H. Yao, P. Zhu et al., “let-7 regulates self renewal and tumorigenicity of breast cancer cells,” Cell, vol. 131, no. 6, pp. 1109–1123, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. D. R. Hurst, M. D. Edmonds, G. K. Scott, C. C. Benz, K. S. Vaidya, and D. R. Welch, “Breast cancer metastasis suppressor 1 up-regulates miR-146, Which suppresses breast cancer metastasis,” Cancer Research, vol. 69, no. 4, pp. 1279–1283, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. G. A. Calin, M. Ferracin, A. Cimmino et al., “A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” The New England Journal of Medicine, vol. 353, no. 17, pp. 1793–1801, 2005. View at Publisher · View at Google Scholar · View at PubMed
  29. Z. Li, J. Lu, M. Sun et al., “Distinct microRNA expression profiles in acute myeloid leukemia with common translocations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15535–15540, 2008. View at Publisher · View at Google Scholar · View at PubMed
  30. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. M. V. Iorio, P. Casalini, E. Tagliabue, S. Menard, and C. M. Croce, “MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer,” European Journal of Cancer, vol. 44, no. 18, pp. 2753–2759, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. A. J. Lowery, N. Miller, R. E. McNeill, and M. J. Kerin, “MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management,” Clinical Cancer Research, vol. 14, no. 2, pp. 360–365, 2008. View at Publisher · View at Google Scholar · View at PubMed
  33. C. Camps, F. M. Buffa, S. Colella et al., “Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer,” Clinical Cancer Research, vol. 14, no. 5, pp. 1340–1348, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. S. F. Tavazoie, C. Alarcon, T. Oskarsson et al., “Endogenous human microRNAs that suppress breast cancer metastasis,” Nature, vol. 451, no. 7175, pp. 147–152, 2008. View at Publisher · View at Google Scholar · View at PubMed
  35. T.-S. Wong, X.-B. Liu, B. Y.-H. Wong, R. W.-M. Ng, A. P.-W. Yuen, and W. I. Wei, “Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue,” Clinical Cancer Research, vol. 14, no. 9, pp. 2588–2592, 2008. View at Publisher · View at Google Scholar · View at PubMed
  36. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at PubMed
  37. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 10513–10518, 2008. View at Google Scholar
  38. K. E. Resnick, H. Alder, J. P. Hagan, D. L. Richardson, C. M. Croce, and D. E. Cohn, “The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform,” Gynecologic Oncology, vol. 112, no. 1, pp. 55–59, 2009. View at Publisher · View at Google Scholar · View at PubMed
  39. E. K. Ng, W. W. Chong, H. C. Jin et al., “Differential expression of microRNAs in plasma of colorectal cancer patients: a potential marker for colorectal cancer screening,” Gut. In press.
  40. O. Kovalchuk, J. Filkowski, J. Meservy et al., “Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 2152–2159, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. R. J. Crowder, D. P. Lombardi, and M. J. Ellis, “Successful targeting of ErbB2 receptors—is PTEN the key?” Cancer Cell, vol. 6, no. 2, pp. 103–104, 2004. View at Publisher · View at Google Scholar · View at PubMed
  42. R. Nahta, T. Takahashi, N. T. Ueno, M.-C. Hung, and F. J. Esteva, “P27kip1 down-regulation is associated with trastuzumab resistance in breast cancer cells,” Cancer Research, vol. 64, no. 11, pp. 3981–3986, 2004. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Galardi, N. Mercatelli, E. Giorda et al., “miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1,” The Journal of Biological Chemistry, vol. 282, no. 32, pp. 23716–23724, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. R. Visone, L. Russo, P. Pallante et al., “MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle,” Endocrine-Related Cancer, vol. 14, no. 3, pp. 791–798, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. T.-C. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. L. He, X. He, L. P. Lim et al., “A microRNA component of the p53 tumour suppressor network,” Nature, vol. 447, no. 7148, pp. 1130–1134, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. J. B. Weidhaas, I. Babar, S. M. Nallur et al., “MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy,” Cancer Research, vol. 67, no. 23, pp. 11111–11116, 2007. View at Publisher · View at Google Scholar · View at PubMed
  48. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2006,” CA: A Cancer Journal for Clinicians, vol. 56, no. 2, pp. 106–130, 2006. View at Publisher · View at Google Scholar
  49. B. Hasemeier, M. Christgen, H. Kreipe, and U. Lehmann, “Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labelled bead technology,” BMC Biotechnology, vol. 8, article 90, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. S. S. C. Chim, T. K. F. Shing, E. C. W. Hung et al., “Detection and characterization of placental microRNAs in maternal plasma,” Clinical Chemistry, vol. 54, no. 3, pp. 482–490, 2008. View at Publisher · View at Google Scholar · View at PubMed
  51. T. R. Brummelkamp, R. Bernards, and R. Agami, “A system for stable expression of short interfering RNAs in mammalian cells,” Science, vol. 296, no. 5567, pp. 550–553, 2002. View at Publisher · View at Google Scholar · View at PubMed
  52. A. Birmingham, E. M. Anderson, A. Reynolds et al., “3 UTR seed matches, but not overall identity, are associated with RNAi off-targets,” Nature Methods, vol. 3, no. 3, pp. 199–204, 2006. View at Google Scholar
  53. E. M. Anderson, A. Birmingham, S. Baskerville et al., “Experimental validation of the importance of seed complement frequency to siRNA specificity,” RNA, vol. 14, no. 5, pp. 853–861, 2008. View at Publisher · View at Google Scholar · View at PubMed
  54. A. L. Jackson, J. Burchard, D. Leake et al., “Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing,” RNA, vol. 12, no. 7, pp. 1197–1205, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. J. Burchard, A. L. Jackson, V. Malkov et al., “MicroRNA-like off-target transcript regulation by siRNAs is species specific,” RNA, vol. 15, no. 2, pp. 308–315, 2009. View at Publisher · View at Google Scholar · View at PubMed