Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 105269, 9 pages
http://dx.doi.org/10.1155/2010/105269
Review Article

Cancer Stem Cells and Epithelial Ovarian Cancer

1Gynaecological Cancer Research Laboratory, EGA UCL Institute for Women's Health, London WC1E 6DD, UK
2King's College School of Medicine, Guy's Hospital, London SE1 9RT, UK

Received 15 June 2010; Accepted 9 November 2010

Academic Editor: Peter E. Schwartz

Copyright © 2010 Sheetal Dyall et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Dubeau, “The cell of origin of ovarian epithelial tumours,” The Lancet Oncology, vol. 9, no. 12, pp. 1191–1197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Wikborn, F. Pettersson, and P. J. Moberg, “Delay in diagnosis of epithelial ovarian cancer,” International Journal of Gynecology and Obstetrics, vol. 52, no. 3, pp. 263–267, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. B. D. Rufford, I. J. Jacobs, and U. Menon, “Feasibility of screening for ovarian cancer using symptoms as selection criteria,” British Journal of Obstetrics and Gynaecology, vol. 114, no. 1, pp. 59–64, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. K. Croker and A. L. Allan, “Cancer stem cells: implications for the progression and treatment of metastatic disease,” Journal of Cellular and Molecular Medicine, vol. 12, no. 2, pp. 374–390, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. Liu, G. Dontu, I. D. Mantle et al., “Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells,” Cancer Research, vol. 66, no. 12, pp. 6063–6071, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. H. Korkaya, A. Paulson, E. Charafe-Jauffret et al., “Regulation of mammary stem/progenitor cells by PTEN/Akt/β-catenin signaling,” PLoS Biology, vol. 7, no. 6, Article ID e1000121, 2009. View at Publisher · View at Google Scholar · View at PubMed
  9. J. Miki, B. Furusato, H. Li et al., “Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens,” Cancer Research, vol. 67, no. 7, pp. 3153–3161, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. E. Charafe-Jauffret, C. Ginestier, F. Iovino et al., “Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature,” Cancer Research, vol. 69, no. 4, pp. 1302–1313, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. G. Dontu, W. M. Abdallah, J. M. Foley et al., “In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells,” Genes and Development, vol. 17, no. 10, pp. 1253–1270, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. Widschwendter, H. Fiegl, D. Egle et al., “Epigenetic stem cell signature in cancer,” Nature Genetics, vol. 39, no. 2, pp. 157–158, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. E. Dick, M. Bhatia, O. Gan, and U. Kapp, “Assay of human stem cells by repopulation of NOD/SCID mice,” Stem Cells, vol. 15, supplement 1, pp. 199–207, 1997. View at Google Scholar
  14. E. Quintana, M. Shackleton, M. S. Sabel, D. R. Fullen, T. M. Johnson, and S. J. Morrison, “Efficient tumour formation by single human melanoma cells,” Nature, vol. 456, no. 7222, pp. 593–598, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Moshaver, A. Van Rhenen, A. Kelder et al., “Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia,” Stem Cells, vol. 26, no. 12, pp. 3059–3067, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. K. Singh, I. D. Clarke, M. Terasaki et al., “Identification of a cancer stem cell in human brain tumors,” Cancer Research, vol. 63, no. 18, pp. 5821–5828, 2003. View at Google Scholar · View at Scopus
  18. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. K. Engelmann, H. Shen, and O. J. Finn, “MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1,” Cancer Research, vol. 68, no. 7, pp. 2419–2426, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. D. Ponti, A. Costa, N. Zaffaroni et al., “Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties,” Cancer Research, vol. 65, no. 13, pp. 5506–5511, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. R. T. Sussman, M. S. Ricci, L. S. Hart, Y. S. Shi, and W. S. El-Deiry, “Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to TRAIL than the non-SP, a higher expression of c-Myc and TRAIL-receptor DR4,” Cancer Biology and Therapy, vol. 6, no. 9, pp. 1490–1495, 2007. View at Google Scholar · View at Scopus
  22. L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi et al., “Identification and expansion of human colon-cancer-initiating cells,” Nature, vol. 445, no. 7123, pp. 111–115, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. M. Friel, P. A. Sergent, C. Patnaude et al., “Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells,” Cell Cycle, vol. 7, no. 2, pp. 242–249, 2008. View at Google Scholar · View at Scopus
  24. L. J. Harper, K. Piper, J. Common, F. Fortune, and I. C. Mackenzie, “Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma,” Journal of Oral Pathology and Medicine, vol. 36, no. 10, pp. 594–603, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Locke, M. Heywood, S. Fawell, and I. C. Mackenzie, “Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines,” Cancer Research, vol. 65, no. 19, pp. 8944–8950, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. M. E. Prince, R. Sivanandan, A. Kaczorowski et al., “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 973–978, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. Gou, T. Liu, C. Wang et al., “Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties,” Pancreas, vol. 34, no. 4, pp. 429–435, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. D. Brown, P. E. Gilmore, C. A. Hart et al., “Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations,” Prostate, vol. 67, no. 13, pp. 1384–1396, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. Patrawala, T. Calhoun, R. Schneider-Broussard, J. Zhou, K. Claypool, and D. G. Tang, “Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2 and ABCG2 cancer cells are similarly tumorigenic,” Cancer Research, vol. 65, no. 14, pp. 6207–6219, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. B. Alvero, R. Chen, H. H. Fu et al., “Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemo-resistance,” Cell Cycle, vol. 8, no. 1, pp. 158–166, 2009. View at Google Scholar · View at Scopus
  31. T. Baba, P. A. Convery, N. Matsumura et al., “Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells,” Oncogene, vol. 28, no. 2, pp. 209–218, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. A. Bapat, A. M. Mali, C. B. Koppikar, and N. K. Kurrey, “Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer,” Cancer Research, vol. 65, no. 8, pp. 3025–3029, 2005. View at Google Scholar · View at Scopus
  33. M. D. Curley, V. A. Therrien, C. L. Cummings et al., “CD133 expression defines a tumor initiating cell population in primary human ovarian cancer,” Stem Cells, vol. 27, no. 12, pp. 2875–2883, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. G. Ferrandina, G. Bonanno, L. Pierelli et al., “Expression of CD133-1 and CD133-2 in ovarian cancer,” International Journal of Gynecological Cancer, vol. 18, no. 3, pp. 506–514, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. D. Curley, V. A. Therrien, C. L. Cummings et al., “CD133 expression defines a tumor initiating cell population in primary human ovarian cancer,” Stem Cells, vol. 27, no. 12, pp. 2875–2883, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. L. Moserle, S. Indraccolo, M. Ghisi et al., “The side population of ovarian cancer cells is a primary target of IFN-α antitumor effects,” Cancer Research, vol. 68, no. 14, pp. 5658–5668, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. Zhang, C. Balch, M. W. Chan et al., “Identification and characterization of ovarian cancer-initiating cells from primary human tumors,” Cancer Research, vol. 68, no. 11, pp. 4311–4320, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. L. Vermeulen, M. Todaro, F. De Sousa Mello et al., “Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13427–13432, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. B. L. K. Coles-Takabe, I. Brain, K. A. Purpura et al., “Don't look: growing clonal versus nonclonal neural stem cell colonies,” Stem Cells, vol. 26, no. 11, pp. 2938–2944, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. Corbeil, K. Röper, A. Hellwig et al., “The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions,” Journal of Biological Chemistry, vol. 275, no. 8, pp. 5512–5520, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, “Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1797–1806, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. S. K. Addla, M. D. Brown, C. A. Hart, V. A. C. Ramani, and N. W. Clarke, “Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells,” American Journal of Physiology, vol. 295, no. 3, pp. F680–F687, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. Christgen, M. Ballmaier, H. Bruchhardt, R. Wasielewski, H. Kreipe, and U. Lehmann, “Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line,” Molecular and Cellular Biochemistry, vol. 306, no. 1-2, pp. 201–212, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. A. Harris, H. Yang, B. E. Low et al., “Cancer stem cells are enriched in the side population cells in a mouse model of glioma,” Cancer Research, vol. 68, no. 24, pp. 10051–10059, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. C. Hermann, S. L. Huber, T. Herrler et al., “Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer,” Cell Stem Cell, vol. 1, no. 3, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. Kim, H. Turnquist, J. Jackson et al., “The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells,” Clinical Cancer Research, vol. 8, no. 1, pp. 22–28, 2002. View at Google Scholar · View at Scopus
  49. M. D. Brown, P. E. Gilmore, C. A. Hart et al., “Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations,” Prostate, vol. 67, no. 13, pp. 1384–1396, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. P. Szotek, R. Pieretti-Vanmarcke, P. T. Masiakos et al., “Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11154–11159, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. Y. Zhong, C. Zhou, W. Ma et al., “Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342,” Biochemical and Biophysical Research Communications, vol. 364, no. 2, pp. 338–343, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. E. H. Huang, M. J. Hynes, T. Zhang et al., “Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis,” Cancer Research, vol. 69, no. 8, pp. 3382–3389, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. D. A. Hess, L. Wirthlin, T. P. Craft et al., “Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells,” Blood, vol. 107, no. 5, pp. 2162–2169, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. E. Carpentino, M. J. Hynes, H. D. Appelman et al., “Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer,” Cancer Research, vol. 69, no. 20, pp. 8208–8215, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. V. Levina, A. M. Marrangoni, R. DeMarco, E. Gorelik, and A. E. Lokshin, “Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties,” PLoS One, vol. 3, no. 8, Article ID e3077, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. G. D. Richardson, C. N. Robson, S. H. Lang, D. E. Neal, N. J. Maitland, and A. T. Collins, “CD133, a novel marker for human prostatic epithelial stem cells,” Journal of Cell Science, vol. 117, no. 16, pp. 3539–3545, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. H. Immervoll, D. Hoem, P. Sakariassen, O. J. Steffensen, and A. Molven, “Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas,” BMC Cancer, vol. 8, article 48, 2008. View at Publisher · View at Google Scholar · View at PubMed