Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 135285, 12 pages
http://dx.doi.org/10.1155/2010/135285
Review Article

Eph Receptors and Ephrin Ligands: Important Players in Angiogenesis and Tumor Angiogenesis

Department of Radiopharmaceutical Biology, Institute of Radiopharmacy, Research Center Dresden-Rossendorf, 01328 Dresden, Germany

Received 2 December 2009; Accepted 5 January 2010

Academic Editor: Arkadiusz Dudek

Copyright © 2010 Birgit Mosch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Hirai, Y. Maru, K. Hagiwara, J. Nishida, and F. Takaku, “A novel putative tyrosine kinase receptor encoded by the eph gene,” Science, vol. 238, no. 4834, pp. 1717–1720, 1987. View at Google Scholar · View at Scopus
  2. D. Brantley-Sieders, S. Schmidt, M. Parker, and J. Chen, “Eph receptor tyrosine kinases in tumor and tumor microenvironment,” Current Pharmaceutical Design, vol. 10, no. 27, pp. 3431–3442, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Zhou, “The Eph family receptors and ligands,” Pharmacology and Therapeutics, vol. 77, no. 3, pp. 151–181, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kullander and R. Klein, “Mechanisms and functions of Eph and ephrin signalling,” Nature Reviews Molecular Cell Biology, vol. 3, no. 7, pp. 475–486, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J.-P. Himanen, M. J. Chumley, M. Lackmann et al., “Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling,” Nature Neuroscience, vol. 7, no. 5, pp. 501–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. E. B. Pasquale, “Eph-ephrin promiscuity is now crystal clear,” Nature Neuroscience, vol. 7, no. 5, pp. 417–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Surawska, P. C. Ma, and R. Salgia, “The role of ephrins and Eph receptors in cancer,” Cytokine and Growth Factor Reviews, vol. 15, no. 6, pp. 419–433, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Stein, A. A. Lane, D. P. Cerretti et al., “Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses,” Genes and Development, vol. 12, no. 5, pp. 667–678, 1998. View at Google Scholar · View at Scopus
  9. S. C. Alford, J. Bazowski, H. Lorimer, S. Elowe, and P. L. Howard, “Tissue transglutaminase clusters soluble A-type ephrins into functionally active high molecular weight oligomers,” Experimental Cell Research, vol. 313, no. 20, pp. 4170–4179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wykosky, E. Palma, D. M. Gibo, S. Ringler, C. P. Turner, and W. Debinski, “Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor,” Oncogene, vol. 27, no. 58, pp. 7260–7273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Brückner, E. B. Pasquale, and R. Klein, “Tyrosine phosphorylation of transmembrane ligands for Eph receptors,” Science, vol. 275, no. 5306, pp. 1640–1643, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. S. J. Holland, N. W. Gale, G. Mbamalu, G. D. Yancopoulos, M. Henkemeyer, and T. Pawson, “Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands,” Nature, vol. 383, no. 6602, pp. 722–725, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. E. B. Pasquale, “Eph-ephrin bidirectional signaling in physiology and disease,” Cell, vol. 133, no. 1, pp. 38–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. L. Binns, P. P. Taylor, F. Sicheri, T. Pawson, and S. J. Holland, “Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors,” Molecular and Cellular Biology, vol. 20, no. 13, pp. 4791–4805, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. H. Zisch, C. Pazzagli, A. L. Freeman et al., “Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses,” Oncogene, vol. 19, no. 2, pp. 177–187, 2000. View at Google Scholar · View at Scopus
  16. D. Arvanitis and A. Davy, “Eph/ephrin signaling: networks,” Genes and Development, vol. 22, no. 4, pp. 416–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Holder and R. Klein, “Eph receptors and ephrins: effectors of morphogenesis,” Development, vol. 126, no. 10, pp. 2033–2044, 1999. View at Google Scholar · View at Scopus
  18. A. C. Oates, M. Lackmann, M.-A. Power et al., “An early developmental role for Eph-ephrin interaction during vertebrate gastrulation,” Mechanisms of Development, vol. 83, no. 1-2, pp. 77–94, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. P. W. Janes, S. Adikari, and M. Lackmann, “Eph/ephrin signalling and function in oncogenesis: lessons from embryonic development,” Current Cancer Drug Targets, vol. 8, no. 6, pp. 473–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Klein, “Neural development: bidirectional signals establish boundaries,” Current Biology, vol. 9, no. 18, pp. R691–R694, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Mellitzer, Q. Xu, and D. G. Wilkinson, “Eph receptors and ephrins restrict cell intermingling and communication,” Nature, vol. 400, no. 6739, pp. 77–81, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Dottori, L. Hartley, M. Galea et al., “EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13248–13253, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kullander, N. K. Mather, F. Diella, M. Dottori, A. W. Boyd, and R. Klein, “Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo,” Neuron, vol. 29, no. 1, pp. 73–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Hornberger, D. Dütting, T. Ciossek et al., “Modulation of EphA receptor function by coexpressed EphrinA ligands on retinal ganglion cell axons,” Neuron, vol. 22, no. 4, pp. 731–742, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Birgbauer, C. A. Cowan, D. W. Sretavan, and M. Henkemeyer, “Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina,” Development, vol. 127, no. 6, pp. 1231–1241, 2000. View at Google Scholar · View at Scopus
  26. Y. Chen, A. K. Y. Fu, and N. Y. Ip, “Bidirectional signaling of ErbB and Eph receptors at synapses,” Neuron Glia Biology, vol. 4, no. 3, pp. 211–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Klein, “Bidirectional modulation of synaptic functions by Eph/ephrin signaling,” Nature Neuroscience, vol. 12, no. 1, pp. 15–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. T. Henderson, J. Georgiou, Z. Jia et al., “The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function,” Neuron, vol. 32, no. 6, pp. 1041–1056, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. V. C. Dodelet and E. B. Pasquale, “Eph receptors and ephrin ligands: embryogenesis to tumorigenesis,” Oncogene, vol. 19, no. 49, pp. 5614–5619, 2000. View at Google Scholar · View at Scopus
  30. L. Frieden and J. Chen, “Ephrins and Eph receptors in cancer,” in Recent Progress in Cancer Research, C. K. Tang, Ed., pp. 11–35, 2007. View at Google Scholar
  31. S. H. Wimmer-Kleikamp and M. Lackmann, “Eph-modulated cell morphology, adhesion and motility in carcinogenesis,” IUBMB Life, vol. 57, no. 6, pp. 421–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Dong, J. Wang, Z. Sheng et al., “Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis,” Modern Pathology, vol. 22, no. 1, pp. 151–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Guan, C. Xu, F. Zhang, and C. Ye, “Aberrant methylation of EphA7 in human prostate cancer and its relation to clinicopathologic features,” International Journal of Cancer, vol. 124, no. 1, pp. 88–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Hafner, F. Bataille, S. Meyer et al., “Loss of EphB6 expression in metastatic melanoma,” International Journal of Oncology, vol. 23, no. 6, pp. 1553–1559, 2003. View at Google Scholar · View at Scopus
  35. Y. Maru, H. Hirai, and F. Takaku, “Overexpression confers an oncogenic potential upon the eph gene,” Oncogene, vol. 5, no. 3, pp. 445–447, 1990. View at Google Scholar
  36. H. Miao, B.-R. Wei, D. M. Peehl et al., “Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway,” Nature Cell Biology, vol. 3, no. 5, pp. 527–530, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Miao, E. Burnett, M. Kinch, E. Simon, and B. Wang, “Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation,” Nature Cell Biology, vol. 2, no. 2, pp. 62–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. X. Zou, B. Wang, M. S. Kalo, A. H. Zisch, E. B. Pasquale, and E. Ruoslahti, “An Eph receptor regulates integrin activity through R-Ras,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13813–13818, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. I.-E. Gallouzi, C. M. Brennan, M. G. Stenberg et al., “HuR binding to cytoplasmic mRNA is perturbed by heat shock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3073–3078, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Winter, S. Roepcke, S. Krause et al., “Comparative 3'UTR analysis allows identification of regulatory clusters that drive Eph/ephrin expression in cancer cell lines,” PLoS ONE, vol. 3, no. 7, article e2780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S.-T. Chiu, K.-J. Chang, C.-H. Ting, H.-C. Shen, H. Li, and F.-J. Hsieh, “Over-expression of EphB3 enhances cell-cell contacts and suppresses tumor growth in HT-29 human colon cancer cells,” Carcinogenesis, vol. 30, no. 9, pp. 1475–1486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Cortina, S. Palomo-Ponce, M. Iglesias et al., “EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells,” Nature Genetics, vol. 39, no. 11, pp. 1376–1383, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. N. D. Zantek, M. Azimi, M. Fedor-Chaiken, B. Wang, R. Brackenbury, and M. S. Kinch, “E-cadherin regulates the function of the EphA2 receptor tyrosine kinase,” Cell Growth and Differentiation, vol. 10, no. 9, pp. 629–638, 1999. View at Google Scholar · View at Scopus
  44. I. D. Lawrenson, S. H. Wimmer-Kleikamp, P. Lock et al., “Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling,” Journal of Cell Science, vol. 115, no. 5, pp. 1059–1072, 2002. View at Google Scholar · View at Scopus
  45. S. Wahl, H. Barth, T. Ciossek, K. Aktories, and B. K. Mueller, “Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase,” Journal of Cell Biology, vol. 149, no. 2, pp. 263–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Clifford, L. M. Smith, J. Powell, S. Gattenlöhner, A. Marx, and R. O'Connor, “The EphA3 receptor is expressed in a subset of rhabdomyosarcoma cell lines and suppresses cell adhesion and migration,” Journal of Cellular Biochemistry, vol. 105, no. 5, pp. 1250–1259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y.-X. Feng, J.-S. Zhao, J.-J. Li et al., “Liver cancer: EphrinA2 promotes tumorigenicity through Rac1/Akt/NF-?B signaling pathway,” Hepatology, vol. 51, no. 2, pp. 535–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. L. Holen, M. Shadidi, K. Narvhus, O. Kjøsnes, A. Tierens, and H.-C. Aasheim, “Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 1183–1191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Balakrishnan, F. E. Bleeker, S. Lamba et al., “Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma,” Cancer Research, vol. 67, no. 8, pp. 3545–3550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Lin, C. M. Gan, X. Zhang et al., “A multidimensional analysis of genes mutated in breast and colorectal cancers,” Genome Research, vol. 17, no. 9, pp. 1304–1318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. M. L. Iruela-Arispe and H. F. Dvorak, “Angiogenesis: a dynamic balance of stimulators and inhibitors,” Thrombosis and Haemostasis, vol. 78, no. 1, pp. 672–677, 1997. View at Google Scholar · View at Scopus
  53. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  54. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash, “Vascular-specific growth factors and blood vessel formation,” Nature, vol. 407, no. 6801, pp. 242–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. D. M. Brantley-Sieders and J. Chen, “Eph receptor tyrosine kinases in angiogenesis: from development to disease,” Angiogenesis, vol. 7, no. 1, pp. 17–28, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. H. Kim, H. Hu, S. Guevara-Gallardo, M. T. Y. Lam, S.-Y. Fong, and R. A. Wang, “Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis,” Development, vol. 135, no. 22, pp. 3755–3764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. H. U. Wang, Z.-F. Chen, and D. J. Anderson, “Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4,” Cell, vol. 93, no. 5, pp. 741–753, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. N. W. Gale, P. Baluk, L. Pan et al., “Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells,” Developmental Biology, vol. 230, no. 2, pp. 151–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. S. S. Foo, C. J. Turner, S. Adams et al., “Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly,” Cell, vol. 124, no. 1, pp. 161–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Oike, Y. Ito, K. Hamada et al., “Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells,” Blood, vol. 100, no. 4, pp. 1326–1333, 2002. View at Google Scholar · View at Scopus
  61. T. Füller, T. Korff, A. Kilian, G. Dandekar, and H. G. Augustin, “Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells,” Journal of Cell Science, vol. 116, no. 12, pp. 2461–2470, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. R. H. Adams, F. Diella, S. Hennig, F. Helmbacher, U. Deutsch, and R. Klein, “The cytoplasmic domain of the ligand EphrinB2 is required for vascular morphogenesis but not cranial neural crest migration,” Cell, vol. 104, no. 1, pp. 57–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Salvucci, D. Maric, M. Economopoulou et al., “EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures,” Blood, vol. 114, no. 8, pp. 1707–1716, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. J. Steinle, C. J. Meininger, R. Forough, G. Wu, M. H. Wu, and H. J. Granger, “Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43830–43835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. R. H. Adams, G. A. Wilkinson, C. Weiss et al., “Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis,” Genes and Development, vol. 13, no. 3, pp. 295–306, 1999. View at Google Scholar · View at Scopus
  66. J. Cross, M. Hemberger, Y. Lu et al., “Trophoblast functions, angiogenesis and remodeling of the maternal vasculature in the placenta,” Molecular and Cellular Endocrinology, vol. 187, no. 1-2, pp. 207–212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Egawa, S. Yoshioka, T. Higuchi et al., “Ephrin B1 is expressed on human luteinizing granulosa cells in corpora lutea of the early luteal phase: the possible involvement of the B class Eph-ephrin system during corpus luteum formation,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 9, pp. 4384–4392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. U. Huynh-Do, E. Stein, A. A. Lane, H. Liu, D. P. Cerretti, and T. O. Daniel, “Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through αvβ3 and α5β1 integrins,” EMBO Journal, vol. 18, no. 8, pp. 2165–2173, 1999. View at Google Scholar · View at Scopus
  69. J. L. McBride and J. C. Ruiz, “Ephrin-A1 is expressed at sites of vascular development in the mouse,” Mechanisms of Development, vol. 77, no. 2, pp. 201–204, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Cheng, D. M. Brantley, H. Liu et al., “Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis,” Molecular Cancer Research, vol. 1, no. 1, pp. 2–11, 2002. View at Google Scholar · View at Scopus
  71. N. Cheng, D. M. Brantley, and J. Chen, “The ephrins and Eph receptors in angiogenesis,” Cytokine and Growth Factor Reviews, vol. 13, no. 1, pp. 75–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. D. M. Brantley-Sieders, J. Caughron, D. Hicks, A. Pozzi, J. C. Ruiz, and J. Chen, “EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation,” Journal of Cell Science, vol. 117, no. 10, pp. 2037–2049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. T. O. Daniel, E. Stein, D. P. Cerretti, P. L. St. John, B. Robert, and D. R. Abrahamson, “ELK and LERK-2 in developing kidney and microvascular endothelial assembly,” Kidney International, vol. 50, no. 57, pp. S73–S81, 1996. View at Google Scholar
  74. P. Dobrzanski, K. Hunter, S. Jones-Bolin et al., “Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist,” Cancer Research, vol. 64, no. 3, pp. 910–919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Folkman, “Fighting cancer by attacking its blood supply,” Scientific American, vol. 275, no. 3, pp. 150–154, 1996. View at Google Scholar · View at Scopus
  76. D. Ribatti, B. Nico, E. Crivellato, A. M. Roccaro, and A. Vacca, “The history of the angiogenic switch concept,” Leukemia, vol. 21, no. 1, pp. 44–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Liss, M. J. Fekete, R. Hasina, and M. W. Lingen, “Retinoic acid modulates the ability of macrophages to participate in the induction of the angiogenic phenotype in head and neck squamous cell carcinoma,” International Journal of Cancer, vol. 100, no. 3, pp. 283–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Baird and N. Ling, “Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response,” Biochemical and Biophysical Research Communications, vol. 142, no. 2, pp. 428–435, 1987. View at Google Scholar · View at Scopus
  79. G. A. Homandberg, J. E. Williams, and D. Grant, “Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth,” American Journal of Pathology, vol. 120, no. 3, pp. 327–332, 1985. View at Google Scholar
  80. C. Clapp, J. A. Martial, R. C. Guzman, F. Rentier-Delrue, and R. I. Weiner, “The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis,” Endocrinology, vol. 133, no. 3, pp. 1292–1299, 1993. View at Publisher · View at Google Scholar · View at Scopus
  81. N. Ferrara, C. Clapp, and R. Weiner, “The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells,” Endocrinology, vol. 129, no. 2, pp. 896–900, 1991. View at Google Scholar · View at Scopus
  82. M. S. O'Reilly, L. Holmgren, Y. Shing et al., “Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma,” Cell, vol. 79, no. 2, pp. 315–328, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. S. K. Gupta, T. Hassel, and J. P. Singh, “A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7799–7803, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. S. S. Tolsma, O. V. Volpert, D. J. Good, W. A. Frazier, P. J. Polverini, and N. Bouck, “Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity,” Journal of Cell Biology, vol. 122, no. 2, pp. 497–511, 1993. View at Google Scholar · View at Scopus
  85. J. Nelson, W. E. Allen, W. N. Scott et al., “Murine epidermal growth factor (EGF) fragment (33–42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis,” Cancer Research, vol. 55, no. 17, pp. 3772–3776, 1995. View at Google Scholar · View at Scopus
  86. M. J. Bissell, “Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch: a rose by any other name?” American Journal of Pathology, vol. 155, no. 3, pp. 675–679, 1999. View at Google Scholar · View at Scopus
  87. A. J. Maniotis, R. Folberg, A. Hess et al., “Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry,” American Journal of Pathology, vol. 155, no. 3, pp. 739–752, 1999. View at Google Scholar · View at Scopus
  88. A. R. Hess, E. A. Seftor, L. M. G. Gardner et al., “Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2),” Cancer Research, vol. 61, no. 8, pp. 3250–3255, 2001. View at Google Scholar · View at Scopus
  89. S. Meyer, C. Hafner, and T. Vogt, “Role of receptor tyrosine kinase in the angiogenesis,” Hautarzt, vol. 53, no. 9, pp. 629–642, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. A. R. Hess, E. A. Seftor, L. M. Gruman, M. S. Kinch, R. E. B. Seftor, and M. J. C. Hendrix, “VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry,” Cancer Biology and Therapy, vol. 5, no. 2, pp. 228–233, 2006. View at Google Scholar · View at Scopus
  91. Z. Nikolova, V. Djonov, G. Zuercher, A.-C. Andres, and A. Ziemiecki, “Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis,” Journal of Cell Science, vol. 111, no. 18, pp. 2741–2751, 1998. View at Google Scholar · View at Scopus
  92. M. Kimura, Y. Kato, D. Sano et al., “Soluble form of ephrinB2 inhibits xenograft growth of squamous cell carcinoma of the Head and neck,” International Journal of Oncology, vol. 34, no. 2, pp. 321–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. S. R. Kumar, J. Singh, G. Xia et al., “Receptor tyrosine kinase EphB4 is a survival factor in breast cancer,” American Journal of Pathology, vol. 169, no. 1, pp. 279–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Masood, S. Ram Kumar, U. K. Sinha et al., “EphB4 provides survival advantage to squamous cell carcinoma of the head and neck,” International Journal of Cancer, vol. 119, no. 6, pp. 1236–1248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Ogawa, R. Pasqualini, R. A. Lindberg, R. Kain, A. L. Freeman, and E. B. Pasquale, “The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization,” Oncogene, vol. 19, no. 52, pp. 6043–6052, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. Shao, W.-F. Zhang, X.-M. Chen, and Z.-J. Shang, “Expression of EphA2 and VEGF in squamous cell carcinoma of the tongue: correlation with the angiogenesis and clinical outcome,” Oral Oncology, vol. 44, no. 12, pp. 1110–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. D. M. Brantley, N. Cheng, E. J. Thompson et al., “Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo,” Oncogene, vol. 21, no. 46, pp. 7011–7026, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Cheng, D. Brantley, W. B. Fang et al., “Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors,” Neoplasia, vol. 5, no. 5, pp. 445–456, 2003. View at Google Scholar · View at Scopus
  99. D. M. Brantley-Sieders, W. B. Fang, D. J. Hicks, G. Zhuang, Y. Shyr, and J. Chen, “Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression,” FASEB Journal, vol. 19, no. 13, pp. 1884–1886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Lu, M. M. K. Shahzad, H. Wang et al., “EphA2 overexpression promotes ovarian cancer growth,” Cancer Biology and Therapy, vol. 7, no. 7, pp. 1098–1103, 2008. View at Google Scholar · View at Scopus
  101. N. K. Noren, M. Lu, A. L. Freeman, M. Koolpe, and E. B. Pasquale, “Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 15, pp. 5583–5588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Erber, U. Eichelsbacher, V. Powajbo et al., “EphB4 controls blood vascular morphogenesis during postnatal angiogenesis,” EMBO Journal, vol. 25, no. 3, pp. 628–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Almog, L. Ma, R. Raychowdhury et al., “Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype,” Cancer Research, vol. 69, no. 3, pp. 836–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. M. M. Vihanto, J. Plock, D. Erni, B. M. Frey, F. J. Frey, and U. Huynh-Do, “Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin,” FASEB Journal, vol. 19, no. 12, pp. 1689–1691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. E. Martin-Rendon, S. J. M. Hale, D. Ryan et al., “Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia,” Stem Cells, vol. 25, no. 4, pp. 1003–1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Yamashita, K. Ohneda, M. Nagano et al., “Hypoxia-inducible transcription factor-2a in endothelial cells regulates tumor neovascularization through activation of ephrin A1,” Journal of Biological Chemistry, vol. 283, no. 27, pp. 18926–18936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. W. E. Truog, D. Xu, I. I. Ekekezie et al., “Chronic hypoxia and rat lung development: analysis by morphometry and directed microarray,” Pediatric Research, vol. 64, no. 1, pp. 56–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Marme, “The impact of anti-angiogenic agents on cancer therapy,” Journal of Cancer Research and Clinical Oncology, vol. 129, no. 11, pp. 607–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Shibuya, “Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis,” Journal of Biochemistry and Molecular Biology, vol. 41, no. 4, pp. 278–286, 2008. View at Google Scholar · View at Scopus
  110. K. Carles-Kinch, K. E. Kilpatrick, J. C. Stewart, and M. S. Kinch, “Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior,” Cancer Research, vol. 62, no. 10, pp. 2840–2847, 2002. View at Google Scholar · View at Scopus
  111. K. T. Coffman, M. Hu, K. Carles-Kinch et al., “Differential EphA2 epitope display on normal versus malignant cells,” Cancer Research, vol. 63, no. 22, pp. 7907–7912, 2003. View at Google Scholar · View at Scopus
  112. W. Mao, E. Luis, S. Ross et al., “EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer,” Cancer Research, vol. 64, no. 3, pp. 781–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Vearing, F.-T. Lee, S. Wimmer-Kleikamp et al., “Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: potential as EphA3-specific tumor-targeting reagents,” Cancer Research, vol. 65, no. 15, pp. 6745–6754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Kertesz, V. Krasnoperov, R. Reddy et al., “The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth,” Blood, vol. 107, no. 6, pp. 2330–2338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. G. Martiny-Baron, T. Korff, F. Schaffner et al., “Inhibition of tumor growth and angiogenesis by soluble EphB4,” Neoplasia, vol. 6, no. 3, pp. 248–257, 2004. View at Google Scholar · View at Scopus
  116. J. S. Scehnet, E. J. Ley, V. Krasnoperov et al., “The role of Ephs, Ephrins, and growth factors in Kaposi sarcoma and implications of EphrinB2 blockade,” Blood, vol. 113, no. 1, pp. 254–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. M. H. Davies, D. O. Zamora, J. R. Smith, and M. R. Powers, “Soluble ephrin-B2 mediates apoptosis in retinal neovascularization and in endothelial cells,” Microvascular Research, vol. 77, no. 3, pp. 382–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. D. O. Zamora, M. H. Davies, S. R. Planck, J. T. Rosenbaum, and M. R. Powers, “Soluble forms of EphrinB2 and EphB4 reduce retinal neovascularization in a model of proliferative retinopathy,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2175–2182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. A. M. Gobin, J. J. Moon, and J. L. West, “Ephrin A1-targeted nanoshells for photothermal ablation of prostate cancer cells,” International Journal of Nanomedicine, vol. 3, no. 3, pp. 351–358, 2008. View at Google Scholar · View at Scopus
  120. J. E. Chrencik, A. Brooun, M. I. Recht et al., “Structure and thermodynamic characterization of the EphB4/Ephrin-B2 antagonist peptide complex reveals the determinants for receptor specificity,” Structure, vol. 14, no. 2, pp. 321–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. J. E. Chrencik, A. Brooun, M. I. Recht et al., “Three-dimensional structure of the EphB2 receptor in complex with an antagonistic peptide reveals a novel mode of inhibition,” Journal of Biological Chemistry, vol. 282, no. 50, pp. 36505–36513, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Koolpe, R. Burgess, M. Dail, and E. B. Pasquale, “EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 17301–17311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. M. Koolpe, M. Dail, and E. B. Pasquale, “An ephrin mimetic peptide that selectively targets the EphA2 receptor,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 46974–46979, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Yamaguchi, T. Tatsumi, T. Takehara et al., “Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines,” Cancer, vol. 110, no. 7, pp. 1469–1477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Bardelle, T. Coleman, D. Cross et al., “Inhibitors of the tyrosine kinase EphB4. Part 2: structure-based discovery and optimisation of 3,5-bis substituted anilinopyrimidines,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 21, pp. 5717–5721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. C. Bardelle, D. Cross, S. Davenport et al., “Inhibitors of the tyrosine kinase EphB4. Part 1: structure-based design and optimization of a series of 2,4-bis-anilinopyrimidines,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 9, pp. 2776–2780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Noberini, M. Koolpe, S. Peddibhotla et al., “Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29461–29472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. Choi, F. Syeda, J. R. Walker et al., “Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 15, pp. 4467–4470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. S. J. Keam, “Dasatinib: in chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia,” BioDrugs, vol. 22, no. 1, pp. 59–69, 2008. View at Google Scholar · View at Scopus
  130. R. Buettner, T. Mesa, A. Vultur, F. Lee, and R. Jove, “Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells,” Molecular Cancer Research, vol. 6, no. 11, pp. 1766–1774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. C. S. Pichot, S. M. Hartig, L. Xia et al., “Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells,” British Journal of Cancer, vol. 101, no. 1, pp. 38–47, 2009. View at Publisher · View at Google Scholar · View at Scopus
  132. G. E. Konecny, R. Glas, J. Dering et al., “Activity of the multikinase inhibitor dasatinib against ovarian cancer cells,” British Journal of Cancer, vol. 101, no. 10, pp. 1699–1708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. Q. Chang, C. Jorgensen, T. Pawson, and D. W. Hedley, “Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer,” British Journal of Cancer, vol. 99, no. 7, pp. 1074–1082, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. Z. Zhou, X. Yuan, Z. Li et al., “RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells,” Surgical Neurology, vol. 70, no. 6, pp. 562–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Vaught, D. M. Brantley-Sieders, and J. Chen, “Eph receptors in breast cancer: roles in tumor promotion and tumor suppression,” Breast Cancer Research, vol. 10, no. 6, p. 217, 2008. View at Google Scholar
  136. N. K. Noren and E. B. Pasquale, “Paradoxes of the EphB4 receptor in cancer,” Cancer Research, vol. 67, no. 9, pp. 3994–3997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Wykosky and W. Debinski, “The EphA2 receptor and EphrinA1 ligand in solid tumors: function and therapeutic targeting,” Molecular Cancer Research, vol. 6, no. 12, pp. 1795–1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. D. Kiewlich, J. Zhang, C. Gross et al., “Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth,” Neoplasia, vol. 8, no. 1, pp. 18–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  139. D. M. Brantley-Sieders, G. Zhuang, D. Hicks et al., “The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling,” Journal of Clinical Investigation, vol. 118, no. 1, pp. 64–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Chen, G. Zhuang, L. Frieden, and W. Debinski, “Eph receptors and ephrins in cancer: common themes and controversies,” Cancer Research, vol. 68, no. 24, pp. 10031–10033, 2008. View at Publisher · View at Google Scholar · View at Scopus