Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 397632, 6 pages
http://dx.doi.org/10.1155/2010/397632
Review Article

Is There a Predisposition Gene for Ewing's Sarcoma?

1Sarcoma Services, Department of Orthopaedics, Huntsman Cancer Institute and Primary, Children's Medical Center, The University of Utah, Utah, UT 84112, USA
2Department of Oncological Sciences, Division of Pediatric Hematology/Oncology, Center for Children's Cancer Research, Huntsman Cancer Institute, The University of Utah, Utah, UT 84112, USA
3Division of Medical Oncology, The University of Utah, Utah, UT 84112, USA
4Department of Orthopaedics, Indiana University, Indiana, IN 46202, USA
5Division of Genetic Epidemiology, Department of Internal Medicine, The University of Utah, Utah, UT 84112, USA
6George E. Wallen Department, Veterans Affairs Medical Center, Salt Lake City, The University of Utah, Utah, UT 84148, USA

Received 25 August 2009; Revised 14 December 2009; Accepted 8 February 2010

Academic Editor: Frederic G. Barr

Copyright © 2010 R. L. Randall et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Malkin, F. P. Li, L. C. Strong et al., “Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms,” Science, vol. 250, no. 4985, pp. 1233–1238, 1990. View at Google Scholar · View at Scopus
  2. A. Drash, F. Sherman, W. H. Hartmann, and R. M. Blizzard, “A syndrome of pseudohermaphroditism, Wilms' tumor, hypertension, and degenerative renal disease,” The Journal of Pediatrics, vol. 76, no. 4, pp. 585–593, 1970. View at Google Scholar · View at Scopus
  3. R. W. Miller, J. F. Fraumeni Jr., and M. D. Manning, “Association of Wilms's tumor with aniridia, hemihypertrophy and other congenital malformations,” The New England Journal of Medicine, vol. 270, pp. 922–927, 1964. View at Google Scholar
  4. L. Granowetter, R. Womer, M. Devidas et al., “Dose-intensified compared with standard chemotherapy for nonmetastatic ewing sarcoma family of tumors: a children's oncology group study,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2536–2541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. E. Grier, M. D. Krailo, N. J. Tarbell et al., “Addition of ifosfamide and etoposide to standard chemotherapy for Ewing's sarcoma and primitive neuroectodermal tumor of bone,” The New England Journal of Medicine, vol. 348, no. 8, pp. 694–701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. C. R. Walkley, R. Qudsi, V. G. Sankaran et al., “Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease,” Genes and Development, vol. 22, no. 12, pp. 1662–1676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Ewing, “Diffuse endothelioma of bone,” Proceedings of the New York Pathological Society, vol. 21, pp. 17–24, 1921. View at Google Scholar
  8. J. Ewing, “Further report on endothelial myeloma of bone,” Proceedings of the New York Pathological Society, vol. 24, pp. 93–101, 1924. View at Google Scholar
  9. M. E. Kadin and K. G. Bensch, “On the origin of Ewing's tumor,” Cancer, vol. 27, no. 2, pp. 257–273, 1971. View at Google Scholar · View at Scopus
  10. P. S. Dickman, L. A. Liotta, and T. J. Triche, “Ewing's sarcoma. Characterization in established cultures and evidence of its histogenesis,” Laboratory Investigation, vol. 47, no. 4, pp. 375–382, 1982. View at Google Scholar · View at Scopus
  11. J. J. Navas-Palacios, R. Aparicio-Duque, and M. D. Valdes, “On the histogenesis of Ewing's sarcoma. An ultrastructural, immunohistochemical, and cytochemical study,” Cancer, vol. 53, no. 9, pp. 1882–1901, 1984. View at Google Scholar · View at Scopus
  12. M. Lipinski, K. Braham, and I. Philip, “Neuroectoderm-associated antigens on Ewing's sarcoma cell lines,” Cancer Research, vol. 47, no. 1, pp. 183–187, 1987. View at Google Scholar · View at Scopus
  13. A. O. Cavazzana, J. S. Miser, J. Jefferson, and T. J. Triche, “Experimental evidence for a neural origin of Ewing's sarcoma of bone,” American Journal of Pathology, vol. 127, no. 3, pp. 507–518, 1987. View at Google Scholar · View at Scopus
  14. N. Riggi, L. Cironi, P. Provero et al., “Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells,” Cancer Research, vol. 65, no. 24, pp. 11459–11468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Riggi, M.-L. Suva, D. Suva et al., “EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells,” Cancer Research, vol. 68, no. 7, pp. 2176–2185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Tirode, K. Laud-Duval, A. Prieur, B. Delorme, P. Charbord, and O. Delattre, “Mesenchymal stem cell features of Ewing tumors,” Cancer Cell, vol. 11, no. 5, pp. 421–429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. H. B. Sorensen, S. L. Lessnick, D. Lopez-Terrada, X. F. Liu, T. J. Triche, and C. T. Denny, “A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG,” Nature Genetics, vol. 6, no. 2, pp. 146–151, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Turc-Carel, A. Aurias, F. Mugneret et al., “Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases and remarkable consistency of t(11;22)(q24;q12),” Cancer Genetics and Cytogenetics, vol. 32, no. 2, pp. 229–238, 1988. View at Google Scholar · View at Scopus
  19. I.-S. Jeon, J. N. Davis, B. S. Braun et al., “A variant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1,” Oncogene, vol. 10, no. 6, pp. 1229–1234, 1995. View at Google Scholar · View at Scopus
  20. M. Peter, J. Couturier, H. Pacquement et al., “A new member of the ETS family fused to EWS in Ewing tumors,” Oncogene, vol. 14, no. 10, pp. 1159–1164, 1997. View at Google Scholar · View at Scopus
  21. O. Delattre, J. Zucman, B. Plougastel et al., “Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours,” Nature, vol. 359, no. 6391, pp. 162–165, 1992. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Lessnick, B. S. Braun, C. T. Denny, and W. A. May, “Multiple domains mediate transformation by the Ewing's sarcoma EWS/FLI-1 fusion gene,” Oncogene, vol. 10, no. 3, pp. 423–431, 1995. View at Google Scholar
  23. B. S. Braun, R. Frieden, S. L. Lessnick, W. A. May, and C. T. Denny, “Identification of target genes for the Ewing's sarcoma EWS/FLI fusion protein by representational difference analysis,” Molecular and Cellular Biology, vol. 15, no. 8, pp. 4623–4630, 1995. View at Google Scholar · View at Scopus
  24. M. Kinsey, R. Smith, and S. L. Lessnick, “NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma,” Molecular Cancer Research, vol. 4, no. 11, pp. 851–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Luo, K. Gangwal, S. Sankar, K. M. Boucher, D. Thomas, and S. L. Lessnick, “GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing's sarcoma oncogenesis and therapeutic resistance,” Oncogene, vol. 28, no. 46, pp. 4126–4132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Owen and S. L. Lessnick, “Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's sarcoma,” Cell Cycle, vol. 5, no. 18, pp. 2049–2053, 2006. View at Google Scholar · View at Scopus
  27. G. Potikyan, R. O. V. Savene, J. M. Gaulden et al., “EWS/FLI1 regulates tumor angiogenesis in Ewing's sarcoma via suppression of thrombospondins,” Cancer Research, vol. 67, no. 14, pp. 6675–6684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Smith, L. A. Owen, D. J. Trem et al., “Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma,” Cancer Cell, vol. 9, no. 5, pp. 405–416, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Zwerner and W. A. May, “PDGC-C is an EWS/FLI induced transforming growth factor in Ewing family tumors,” Oncogene, vol. 20, no. 5, pp. 626–633, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. H.-Y. Huang, P. B. Illei, Z. Zhao et al., “Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse,” Journal of Clinical Oncology, vol. 23, no. 3, pp. 548–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Komuro, Y. Hayashi, M. Kawamura et al., “Mutations of the p53 gene are involved in Ewing's sarcomas but not in neuroblastomas,” Cancer Research, vol. 53, no. 21, pp. 5284–5288, 1993. View at Google Scholar · View at Scopus
  32. A. Patino-Garcia and L. Sierrasesumaga, “Analysis of the p16INK4 and TP53 tumor suppressor genes in bone sarcoma pediatric patients,” Cancer Genetics and Cytogenetics, vol. 98, no. 1, pp. 50–55, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Tsuchiya, K. Sekine, S. Hinohara, T. Namiki, T. Nobori, and Y. Kaneko, “Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma,” Cancer Genetics and Cytogenetics, vol. 120, no. 2, pp. 91–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Ladanyi, R. Lewis, S. C. Jhanwar, W. Gerald, A. G. Huvos, and J. H. Healey, “MDM2 and CDK4 gene amplification in Ewing's sarcoma,” Journal of Pathology, vol. 175, no. 2, pp. 211–217, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Wei, C. R. Antonescu, E. De Alava et al., “Prognostic impact of INK4A deletion in Ewing sarcoma,” Cancer, vol. 89, no. 4, pp. 793–799, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Deneen and C. T. Denny, “Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation,” Oncogene, vol. 20, no. 46, pp. 6731–6741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. L. Lessnick, C. S. Dacwag, and T. R. Golub, “The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts,” Cancer Cell, vol. 1, no. 4, pp. 393–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. L. A. G. Ries, M. P. Eisner, and C. L. Kosary, Eds., SEER Cancer Statistics Review, 1973–1998, National Cancer Institute, Bethesda, Md, USA, 2001.
  39. H. M. Ceha, A. J. Balm, D. de Jong et al., “Multiple malignancies in a patient with bilateral retinoblastoma,” Journal of Laryngology and Otology, vol. 112, no. 2, pp. 189–192, 1998. View at Google Scholar
  40. J. U. Cope, M. Tsokos, and R. W. Miller, “Ewing sarcoma and sinonasal neuroectodermal tumors as second malignant tumors after retinoblastoma and other neoplasms,” Medical and Pediatric Oncology, vol. 36, no. 2, pp. 290–294, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. B. G. Mohney, D. M. Robertson, P. J. Schomberg, and D. O. Hodge, “Second nonocular tumors in survivors of heritable retinoblastoma and prior radiation therapy,” American Journal of Ophthalmology, vol. 126, no. 2, pp. 269–277, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. S. L. Spunt, C. Rodriguez-Galindo, C. E. Fuller et al., “Ewing sarcoma-family tumors that arise after treatment of primary childhood cancer,” Cancer, vol. 107, no. 1, pp. 201–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. G. Gurney, A. R. Swensen, and M. Bultreys, “Malignant bone tumors,” in Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995, L. A. G. Ries, M. A. Smith, J. G. Gurney et al., Eds., pp. 99–110, National Institutes of Health, Bethesda, Md, USA, 1999. View at Google Scholar
  44. J. Zucman-Rossi, M. A. Batzer, M. Stoneking, O. Delattre, and G. Thomas, “Interethnic polymorphism of EWS intron 6: genome plasticity mediated by Alu retroposition and recombination,” Human Genetics, vol. 99, no. 3, pp. 357–363, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Kolomietz, M. S. Meyn, A. Pandita, and J. A. Squire, “The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors,” Genes Chromosomes and Cancer, vol. 35, no. 2, pp. 97–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Whang-Peng, T. J. Triche, T. Knutsen et al., “Chromosome translocation in peripheral neuroepithelioma,” The New England Journal of Medicine, vol. 311, no. 9, pp. 584–585, 1984. View at Google Scholar · View at Scopus
  47. I. T. J. Ferris, O. Berbel Tornero, J. A. Ortega Garcia et al., “Risk factors for pediatric malignant bone tumors,” Anales de Pediatria, vol. 63, no. 6, pp. 537–547, 2005. View at Google Scholar · View at Scopus
  48. E. A. Holly, D. A. Aston, D. K. Ahn, and J. J. Kristiansen, “Ewing's bone sarcoma, paternal occupational exposure, and other factors,” American Journal of Epidemiology, vol. 135, no. 2, pp. 122–129, 1992. View at Google Scholar
  49. P. C. Valery, W. McWhirter, A. Sleigh, G. Williams, and C. Bain, “Farm exposures, parental occupation, and risk of Ewing's sarcoma in Australia: a national case-control study,” Cancer Causes and Control, vol. 13, no. 3, pp. 263–270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. P. C. Valery, W. McWhirter, A. Sleigh, G. Williams, and C. Bain, “A national case-control study of Ewing's sarcoma family of tumours in Australia,” International Journal of Cancer, vol. 105, no. 6, pp. 825–830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. P. C. Valery, G. Williams, A. C. Sleigh, E. A. Holly, N. Kreiger, and C. Bain, “Parental occupation and Ewing's sarcoma: pooled and meta-analysis,” International Journal of Cancer, vol. 115, no. 5, pp. 799–806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Hum, N. Kreiger, and M. M. Finkelstein, “The relationship between parental occupation and bone cancer risk in offspring,” International Journal of Epidemiology, vol. 27, no. 5, pp. 766–771, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. P. C. Valery, E. A. Holly, A. C. Sleigh, G. Williams, N. Kreiger, and C. Bain, “Hernias and Ewing's sarcoma family of tumours: a pooled analysis and meta-analysis,” Lancet Oncology, vol. 6, no. 7, pp. 485–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. D. M. Winn, F. P. Li, L. L. Robison, J. J. Mulvihill, A. E. Daigle, and J. F. Fraumeni Jr., “A case-control study of the etiology of Ewing's sarcoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 1, no. 7, pp. 525–532, 1992. View at Google Scholar
  55. G. Bacci, S. Ferrari, P. Rosito et al., “Ewing's sarcoma of the bone. Anatomoclinical study of 424 cases,” Minerva Pediatrica, vol. 44, no. 7-8, pp. 345–359, 1992. View at Google Scholar
  56. J. D. Buckley, T. W. Pendergrass, C. M. Buckley et al., “Epidemiology of osteosarcoma and Ewing's sarcoma in childhood: a study of 305 cases by the children's cancer group,” Cancer, vol. 83, no. 7, pp. 1440–1448, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Cotterill, C. M. Wright, M. S. Pearce, and A. W. Craft, “Stature of young people with malignant bone tumors,” Pediatric Blood and Cancer, vol. 42, no. 1, pp. 59–63, 2004. View at Google Scholar · View at Scopus
  58. J. F. Fraumeni Jr., “Stature and malignant tumors of bone in childhood and adolescence,” Cancer, vol. 20, no. 6, pp. 967–973, 1967. View at Google Scholar · View at Scopus
  59. D. B. Glasser, K. Duane, J. M. Lane, J. H. Healey, and B. Caparros-Sison, “The effect of chemotherapy on growth in the skeletally immature individual,” Clinical Orthopaedics and Related Research, no. 262, pp. 93–100, 1991. View at Google Scholar
  60. E. A. Operskalski, S. Preston-Martin, B. E. Henderson, and B. R. Visscher, “A case-control study of osteosarcoma in young persons,” American Journal of Epidemiology, vol. 126, no. 1, pp. 118–126, 1987. View at Google Scholar · View at Scopus
  61. C.-H. Pui, R. K. Dodge, S. L. George, and A. A. Green, “Height at diagnosis of malignancies,” Archives of Disease in Childhood, vol. 62, no. 5, pp. 495–499, 1987. View at Google Scholar · View at Scopus
  62. W. Guo, W. Xu, A. G. Huvos, J. H. Healey, and C. Feng, “Comparative frequency of bone sarcomas among different racial groups,” Chinese Medical Journal, vol. 112, no. 12, pp. 1101–1104, 1999. View at Google Scholar · View at Scopus
  63. E. G. Olisa, R. Chandra, and M. A. Jackson, “Malignant tumors in American black and Nigerian children: a comparative study,” Journal of the National Cancer Institute, vol. 55, no. 2, pp. 281–284, 1975. View at Google Scholar
  64. T. Ozaki, K.-L. Schaefer, D. Wai et al., “Population-based genetic alterations in Ewing's tumors from Japanese and European Caucasian patients,” Annals of Oncology, vol. 13, no. 10, pp. 1656–1664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. A. P. Polednak, “Primary bone cancer incidence in black and white residents of New York State,” Cancer, vol. 55, no. 12, pp. 2883–2888, 1985. View at Google Scholar · View at Scopus
  66. K. J. Johnson, S. E. Carozza, E. J. Chow et al., “Parental age and risk of childhood cancer,” Epidemiology, vol. 20, no. 4, pp. 475–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. F. Crow, “The origins, patterns and implications of human spontaneous mutation,” Nature Reviews Genetics, vol. 1, no. 1, pp. 40–47, 2000. View at Google Scholar · View at Scopus
  68. J. D. Dockerty, G. Draper, T. Vincent, S. D. Rowan, and K. J. Bunch, “Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers,” International Journal of Epidemiology, vol. 30, no. 6, pp. 1428–1437, 2001. View at Google Scholar · View at Scopus
  69. B. H. Yip, Y. Pawitan, and K. Czene, “Parental age and risk of childhood cancers: a population-based cohort study from Sweden,” International Journal of Epidemiology, vol. 35, no. 6, pp. 1495–1503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Ji and K. Hemminki, “Familial risk for histology-specific bone cancers: an updated study in Sweden,” European Journal of Cancer, vol. 42, no. 14, pp. 2343–2349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. C. L. McCormack, M. B. Dockerty, and R. K. Ghormley, “Ewing's sarcoma,” Cancer, vol. 5, no. 1, pp. 85–99, 1952. View at Google Scholar
  72. R. W. Huntington, D. J. Sheffel, M. Iger, and C. Henkelmann, “Malignant bone tumors in siblings: Ewing's tumor and an unusual tumor perhaps a variant of Ewing's tumor,” The Journal of Bone and Joint Surgery, vol. 42, pp. 1065–1075, 1960. View at Google Scholar
  73. R. V. P. Hutter, K. C. Francis, and F. W. Foote Jr., “Ewing's sarcoma in siblings. Report of the second known occurrence,” The American Journal of Surgery, vol. 107, no. 4, pp. 598–603, 1964. View at Google Scholar · View at Scopus
  74. M. J. Joyce, D. C. Harmon, H. J. Mankin et al., “Ewing's sarcoma in female siblings. A clinical report and review of the literature,” Cancer, vol. 53, no. 9, pp. 1959–1962, 1984. View at Google Scholar · View at Scopus
  75. K. J. Helton, B. D. Fletcher, L. E. Kun, J. J. Jenkins III, and C. B. Pratt, “Bone tumors other than osteosarcoma after retinoblastoma,” Cancer, vol. 71, no. 9, pp. 2847–2853, 1993. View at Google Scholar · View at Scopus
  76. R. Mittal, S. Al Awadi, O. Sahar, and A. M. Behbehani, “Ewing's sarcoma as second malignant neoplasm after retinoblastoma: a case report,” Medical Principles and Practice, vol. 17, no. 1, pp. 84–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Gangwal, S. Sankar, P. C. Hollenhorst et al., “Microsatellites as EWS/FLI response elements in Ewing's sarcoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10149–10154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Gangwal and S. L. Lessnicke, “Microsatellites are EWS/FLI response elements: genomic “junk” is EWS/FLI's treasure,” Cell Cycle, vol. 7, no. 20, pp. 3127–3132, 2008. View at Google Scholar · View at Scopus