Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010 (2010), Article ID 414726, 4 pages
http://dx.doi.org/10.1155/2010/414726
Case Report

Non-Hodgkin's Lymphoma Reversal with Dichloroacetate

1Klinik im Alpenpark, Defreggerweg 2-6, Ringsee, 83707 Tegernsee, Germany
2Foundation for Collaborative Medicine and Research, 24 Midwood Drive, Greenwich, CT 06830, USA

Received 4 June 2010; Accepted 23 July 2010

Academic Editor: Michael A. Carducci

Copyright © 2010 Dana F. Flavin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Non-Hodgkin's Lymphoma, National Cancer Institute, U.S. National Institutes of Health, Rockville, Md, USA, May 2009, http://www.cancer.gov/cancertopics/types/non-hodgkin.
  2. J. O. Armitage and D. L. Longo, “Malignancies of lymphoid cells,” in Harrisons's Principles of Internal Medicine, D. L. Kasper, E. Braunwald, and A. S. Fauci, Eds., pp. 642–655, McGraw Hill, New York, NY, USA, 16th edition, 2005. View at Google Scholar
  3. E. Kimby, L. Brandt, P. Nygren, and B. Glimelius, “A systematic overview of chemotherapy effects in aggressive non-Hodgkin's lymphoma,” Acta Oncologica, vol. 40, no. 2-3, pp. 198–212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. N. G. Mikhaeel, “Use of FDG-PET to monitor response to chemotherapy and radiotherapy in patients with lymphomas,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 33, no. 13, supplement 1, pp. 22–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Donohue, H. Galal-Gorchev, W. Brattin, J. J. Liccione, and K. B. Altshuler, Toxicological Review of Dichloroacetic Acid, Integrated Risk Information System, U.S. EPA, Washington, DC, USA, August 2003.
  6. I. R. Schultz and R. E. Shangraw, “Effect of short-term drinking water exposure to dichloroacetate on its pharmacokinetics nd oral bioavailability in human volunteers: a stable isotope study,” Toxicological Sciences, vol. 92, no. 1, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. W. Stacpoole, G. N. Henderson, Z. Yan, and M. O. James, “Clinical pharmacology and toxicology of dichloroacetate,” Environmental Health Perspectives, vol. 106, supplement 4, pp. 989–994, 1998. View at Google Scholar · View at Scopus
  8. P. W. Stacpoole, A. C. Lorenz, R. G. Thomas, and E. M. Harman, “Dichloroacetate in the treatment of lactic acidosis,” Annals of Internal Medicine, vol. 108, no. 1, pp. 58–63, 1988. View at Google Scholar · View at Scopus
  9. P. W. Stacpoole, “The pharmacology of dichloroacetate,” Metabolism, vol. 38, no. 11, pp. 1124–1144, 1989. View at Google Scholar · View at Scopus
  10. P. W. Stacpoole, L. R. Gilbert, R. E. Neiberger et al., “Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate,” Pediatrics, vol. 121, no. 5, pp. e1223–e1228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. H. Curry, A. Lorenz, P.-I. Chu, M. Limacher, and P. W. Stacpoole, “(DCA) and oxalate following oral DCA doses,” Biopharmaceutics and Drug Disposition, vol. 12, no. 5, pp. 375–390, 1991. View at Google Scholar · View at Scopus
  12. M. Jia, B. Coats, M. Chadha et al., “Human kinetics of orally and intravenously administered low-dose 1,2-(13)C-dichloroacetate,” Journal of Clinical Pharmacology, vol. 46, no. 12, pp. 1449–1459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Berendzen, D. W. Theriaque, J. Shuster, and P. W. Stacpoole, “Therapeutic potential of dichloroacetate for pyruvate dehydrogenase complex deficiency,” Mitochondrion, vol. 6, no. 3, pp. 126–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. W. Stacpoole, D. S. Kerr, C. Barnes et al., “Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children,” Pediatrics, vol. 117, no. 5, pp. 1519–1531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. W. Stacpoole, H. J. Harwood Jr., D. F. Cameron et al., “Chronic toxicity of dichloroacetate: possible relation to thiamine deficiency in rats,” Fundamental and Applied Toxicology, vol. 14, no. 2, pp. 327–337, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. P. W. Stacpoole, T. L. Kurtz, Z. Han, and T. Langaee, “Role of dichloroacetate in the treatment of genetic mitochondrial diseases,” Advanced Drug Delivery Reviews, vol. 60, no. 13-14, pp. 1478–1487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Warburg, F. Wind, and E. Negelein, “Über den Stoffwechsel von Tumoren im Körper,” Journal of Molecular Medicine, vol. 5, no. 19, pp. 829–832, 1926. View at Publisher · View at Google Scholar · View at Scopus
  18. E. D. Michelakis, L. Webster, and J. R. Mackey, “Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer,” British Journal of Cancer, vol. 99, no. 7, pp. 989–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bonnet, S. L. Archer, J. Allalunis-Turner et al., “A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth,” Cancer Cell, vol. 11, no. 1, pp. 37–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Boutwell, “Biochemical mechanism of tumor promotion,” in Carcinogensis Mechanisms of Tumor Promotion and Cocarcinogenesis, T. J. Slaga, A. Sivak, and R. K. Boutwell, Eds., pp. 29–58, Raven press, New York, NY, USA, 1978. View at Google Scholar
  21. J. Y. Y. Wong, G. S. Huggins, M. Debidda, N. C. Munshi, and I. De Vivo, “Dichloroacetate induces apoptosis in endometrial cancer cells,” Gynecologic Oncology, vol. 109, no. 3, pp. 394–402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Cao, S. Yacoub, K. T. Shiverick et al., “Dichloroacetate (DCA) sensitizes both wild-type and over expressing bcl-2 prostate cancer cells in vitro to radiation,” Prostate, vol. 68, no. 11, pp. 1223–1231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Spruijt, R. K. Naviaux, K. A. McGowan et al., “Nerve conduction changes in patients with mitochondrial diseases treated with dichloroacetate,” Muscle and Nerve, vol. 24, no. 7, pp. 916–924, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. G. Pan and T. W. Mak, “Metabolic targeting as an anticancer strategy: dawn of a new era?” Science's STKE, vol. 2007, no. 381, p. pe14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Krishna, T. Agbenyega, B. J. Angus et al., “Pharmacokinetics and pharmacodynamics of dichloroacetate in children with lactic acidosis due to severe malaria,” QJM, vol. 88, no. 5, pp. 341–349, 1995. View at Google Scholar · View at Scopus
  26. S. Myhill, N. E. Booth, and J. McLaren-Howard, “Chronic fatigue syndrome and mitochondrial dysfunction,” International Journal of Clinical and Experimental Medicine, vol. 2, no. 1, pp. 1–16, 2009. View at Google Scholar · View at Scopus
  27. P. W. Stacpoole, G. W. Moore, and D. M. Kornhauser, “Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia,” New England Journal of Medicine, vol. 298, no. 10, pp. 526–530, 1978. View at Google Scholar · View at Scopus
  28. G. W. Moore, L. L. Swift, and D. Rabinowitz, “Reduction of serum cholesterol in two patients with homozygous familial hypercholesterolemia by dichloroacetate,” Atherosclerosis, vol. 33, no. 3, pp. 285–293, 1979. View at Google Scholar · View at Scopus