Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2010, Article ID 740472, 9 pages
http://dx.doi.org/10.1155/2010/740472
Review Article

Targeted Therapy in Ovarian Cancer

Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, CA 92868, USA

Received 9 July 2009; Revised 5 November 2009; Accepted 10 November 2009

Academic Editor: Charles F. Levenback

Copyright © 2010 Lyndsay J. Willmott and John P. Fruehauf. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, Cancer Facts & Figures 2009, American Cancer Society, Atlanta, Ga, USA, 2009.
  2. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Google Scholar
  3. B. A. Goff, L. S. Mandel, C. W. Drescher et al., “Development of an ovarian cancer symptom index: possibilities for earlier detection,” Cancer, vol. 109, no. 2, pp. 221–227, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. International Federation of Gynecologic Oncology Report, 248, 1991.
  5. R. E. Bristow, R. S. Tomacruz, D. K. Armstrong, E. L. Trimble, and F. J. Montz, “Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis,” Journal of Clinical Oncology, vol. 20, no. 5, pp. 1248–1259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. F. Ozols, B. N. Bundy, B. E. Greer et al., “Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 21, no. 17, pp. 3194–3200, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. J. Copeland, “Epithelial ovarian cancer,” in Clinical Gynecologic Oncology, P. J. Disaia and W. T. Creasman, Eds., pp. 313–367, Mosby-Year Book, St. Louis, Mo, USA, 7th edition, 2007. View at Google Scholar
  8. T. A. Yap, C. P. Carden, and S. B. Kaye, “Beyond chemotherapy: targeted therapies in ovarian cancer,” Nature Reviews Cancer, vol. 9, no. 3, pp. 167–181, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. Agarwal and S. B. Kaye, “Ovarian cancer: strategies for overcoming resistance to chemotherapy,” Nature Reviews Cancer, vol. 3, no. 7, pp. 502–516, 2003. View at Google Scholar · View at Scopus
  10. G. Höpfl, O. Ogunshola, and M. Gassmann, “HIFs and tumors—causes and consequences,” American Journal of Physiology, vol. 286, no. 4, pp. R608–R623, 2004. View at Google Scholar · View at Scopus
  11. J. P. Fruehauf and F. L. Meyskens Jr., “Reactive oxygen species: a breath of life or death?” Clinical Cancer Research, vol. 13, no. 3, pp. 789–794, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. M. Brown, R. L. Cowen, C. Debray et al., “Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1,” Molecular Pharmacology, vol. 69, no. 2, pp. 411–418, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. Beppu, K. Nakamura, W. M. Linehan, A. Rapisarda, and C. J. Thiele, “Topotecan blocks hypoxia-inducible factor-1 α and vascular endothelial growth factor expression induced by insulin-like growth factor-1 in neuroblastoma cells,” Cancer Research, vol. 65, no. 11, pp. 4775–4781, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. R. A. Burger, “Experience with bevacizumab in the management of epithelial ovarian cancer,” Journal of Clinical Oncology, vol. 25, no. 20, pp. 2902–2908, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. A. Nagy, M. S. Meyers, E. M. Masse, K. T. Herzberg, and H. F. Dvorak, “Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity,” Cancer Research, vol. 55, no. 2, pp. 369–375, 1995. View at Google Scholar · View at Scopus
  16. H. Yoshiji, S. Kuriyama, D. J. Hicklin et al., “The vascular endothelial growth factor receptor KDR/Flk-1 is a major regulator of malignant ascites formation in the mouse hepatocellular carcinoma model,” Hepatology, vol. 33, no. 4, pp. 841–847, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. K. Miller, M. Wang, J. Gralow et al., “Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer,” The New England Journal of Medicine, vol. 357, no. 26, pp. 2666–2676, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. A. Sandler, R. Gray, M. C. Perry et al., “Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer,” The New England Journal of Medicine, vol. 355, no. 24, pp. 2542–2550, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. A. Burger, M. W. Sill, B. J. Monk, B. E. Greer, and J. I. Sorosky, “Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5165–5171, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. A. Cannistra, U. A. Matulonis, R. T. Penson et al., “Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5180–5186, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. A. Garcia, H. Hirte, G. Fleming et al., “Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia,” Journal of Clinical Oncology, vol. 26, no. 1, pp. 76–82, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. E. S. Han, P. Lin, and M. Wakabayashi, “Current status on biologic therapies in the treatment of epithelial ovarian cancer,” Current Treatment Options in Oncology, vol. 10, no. 1-2, pp. 54–66, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. P. D. Nathan, I. Judson, A. Padhani et al., “A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 3550. View at Google Scholar
  25. Y. Shaked, A. Ciarrocchi, M. Franco et al., “Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors,” Science, vol. 313, no. 5794, pp. 1785–1787, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. T. Byrne, L. Ross, J. Holash et al., “Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model,” Clinical Cancer Research, vol. 9, no. 15, pp. 5721–5728, 2003. View at Google Scholar · View at Scopus
  27. W. P. Tew, N. Colombo, and I. Ray-Coquard, “VEGF-Trap for patients with recurrent platinum-resistant epithelial ovarian cancer: preliminary results of a randomized, multicenter phase II study,” Journal of Clinical Oncology, vol. 25, no. 18S, 2007, abstract no. 5508. View at Google Scholar
  28. Clinical trials identifier: NCT00436501.
  29. L. K. Ashman, “The biology of stem cell factor and its receptor c-kit,” The International Journal of Biochemistry & Cell Biology, vol. 31, no. 10, pp. 1037–1051, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Vliagoftis, A. S. Worobec, and D. D. Metcalfe, “The protooncogene c-kit and c-kit ligand in human disease,” Journal of Allergy and Clinical Immunology, vol. 100, no. 4, pp. 435–440, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. H. W. Hirte, L. Vidal, and G. F. Fleming, “A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal, or fallopian tube cancer: final results of PMH, Chicago and California consortia trial,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 5521. View at Google Scholar
  32. J. M. S. Bartlett, S. P. Langdon, B. J. B. Simpson et al., “The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer,” British Journal of Cancer, vol. 73, no. 3, pp. 301–306, 1996. View at Google Scholar · View at Scopus
  33. J. Fischer-Colbrie, A. Witt, H. Heinzl et al., “EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients,” Anticancer Research, vol. 17, no. 1, pp. 613–619, 1997. View at Google Scholar · View at Scopus
  34. A. N. Gordon, N. Finkler, R. P. Edwards et al., “Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study,” International Journal of Gynecological Cancer, vol. 15, no. 5, pp. 785–792, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. F. M. Sirotnak, “Studies with ZD1839 in preclinical models,” Seminars in Oncology, vol. 30, no. 1, pp. 12–20, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. F. M. Sirotnak, M. F. Zakowski, V. A. Miller, H. I. Scher, and M. G. Kris, “Efficacy of cytotoxic agents against human tumor zenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase,” Clinical Cancer Research, vol. 6, no. 12, pp. 4885–4892, 2000. View at Google Scholar
  37. F. Ciardiello, R. Caputo, R. Bianco et al., “Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor- selective tyrosine kinase inhibitor,” Clinical Cancer Research, vol. 6, no. 5, pp. 2053–2063, 2000. View at Google Scholar · View at Scopus
  38. R. J. Schilder, M. W. Sill, X. Chen et al., “Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study,” Clinical Cancer Research, vol. 11, no. 15, pp. 5539–5548, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. U. Wagner, A. du Bois, J. Pfisterer et al., “Gefitinib in combination with tamoxifen in patients with ovarian cancer refractory or resistant to platinum-taxane based therapy-a phase II trial of the AGO Ovarian Cancer Study Group (AGO-OVAR 2.6),” Gynecologic Oncology, vol. 105, no. 1, pp. 132–137, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. S. Nimeiri, A. M. Oza, R. J. Morgan et al., “Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: a trial of the Chicago, PMH, and California Phase II consortia,” Gynecologic Oncology, vol. 110, no. 1, pp. 49–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. A. Bookman, K. M. Darcy, D. Clarke-Pearson, R. A. Boothby, and I. R. Horowitz, “Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group,” Journal of Clinical Oncology, vol. 21, no. 2, pp. 283–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Gordon, D. Matei, C. Aghajanian et al., “Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status,” Journal of Clinical Oncology, vol. 24, no. 26, pp. 4324–4332, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. B. Kaye, C. J. Poole, and M. Bidzinksi, “A randomized phase II study evaluating the combination of carboplatin-based chemotherapy with pertuzumab versus carboplatin-based therapy alone in patients with relapsed, platinum sensitive ovarian cancer,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 5520. View at Google Scholar
  44. L. Amler, S. Makhija, and T. Januario, “HER pathway gene expression analysis in a phase II study of pertuzumab + gemcitabine vs. gemcitabine + placebo in patients with platinum-resistant epithelial ovarian cancer,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 5552. View at Google Scholar
  45. S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet, and M. Lynch, “Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3129–3140, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. Matei, M. W. Sill, K. DeGeest, and R. E. Bristow, “Phase II trial of sorafenib in persistent or recurrent epithelial ovarian cancer (EOC) or primary peritoneal cancer (PPC): a gynecologic oncology group study,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 5537. View at Google Scholar
  47. N. S. Azad, E. M. Posadas, V. E. Kwitkowski et al., “Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity,” Journal of Clinical Oncology, vol. 26, no. 22, pp. 3709–3714, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. S. Welch, H. Hirte, L. Elit et al., “CA125 response as a marker of clinical benefit in patients with recurrent ovarian cancer treated with gemcitabine and sorafenib- a trial of the PMH phase II consortium,” Journal of Clinical Oncology, vol. 25, no. 18S, 2007, abstract no. 5519. View at Google Scholar
  49. R. J. Schilder, M. W. Sill, R. B. Lee et al., “Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a gynecologic oncology group study,” Journal of Clinical Oncology, vol. 26, no. 20, pp. 3418–3425, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. R. L. Coleman, R. R. Broaddus, D. C. Bodurka et al., “Phase II trial of imatinib mesylate in patients with recurrent platinum- and taxane-resistant epithelial ovarian and primary peritoneal cancers,” Gynecologic Oncology, vol. 101, no. 1, pp. 126–131, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. D. S. Alberts, P. Y. Liu, S. P. Wilczynski et al., “Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211),” International Journal of Gynecological Cancer, vol. 17, no. 4, pp. 784–788, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J.-C. Amé, C. Spenlehauer, and G. de Murcia, “The PARP superfamily,” BioEssays, vol. 26, no. 8, pp. 882–893, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. F. Dantzer, G. de La Rubia, J. Ménissier-De Murcia, Z. Hostomsky, G. de Murcia, and V. Schreiber, “Base excision repair is impaired in mammalian cells lacking poly(ADP- ribose) polymerase-1,” Biochemistry, vol. 39, no. 25, pp. 7559–7569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. A. N. J. Tutt, C. J. Lord, N. McCabe et al., “Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 70, pp. 139–148, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. K. Gudmundsdottir and A. Ashworth, “The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability,” Oncogene, vol. 25, no. 43, pp. 5864–5874, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. A. Ashworth, “A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair,” Journal of Clinical Oncology, vol. 26, no. 22, pp. 3785–3790, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. H. Farmer, H. McCabe, C. J. Lord et al., “Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy,” Nature, vol. 434, no. 7035, pp. 917–921, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. H. E. Bryant, N. Schultz, H. D. Thomas et al., “Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase,” Nature, vol. 434, no. 7035, pp. 913–917, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. P. C. Fong, J. Spicer, S. Reade et al., “Phase I pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of a small molecule inhibitor of poly ADP-ribose polymerase (PARP), KU-0059436 (Ku) in patients (p) with advanced tumours,” Journal of Clinical Oncology, vol. 24, no. 18S, 2006, abstract no. 3022. View at Google Scholar
  60. T. A. Yap, J. de Bono, and D. Boss, “First in human phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of KU-0059436 (Ku), a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in cancer patients (p), including BRCA1/2 mutation carriers,” Journal of Clinical Oncology, vol. 25, 2007, abstract no. 3529. View at Google Scholar
  61. P. C. Fong, D. S. Boss, C. P. Carden et al., “AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: results from a phase I study,” Journal of Clinical Oncology, vol. 26, 2008, abstract no. 5510. View at Google Scholar
  62. P. C. Fong, D. S. Boss, T. A. Yap et al., “Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers,” The New England Journal of Medicine, vol. 361, no. 2, pp. 123–134, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus