Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2011, Article ID 946936, 14 pages
http://dx.doi.org/10.1155/2011/946936
Research Article

Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

1Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya-Cho, Izumo, Shimane 693-8501, Japan
2Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5254, USA
3Department of Hematology, Shimane University School of Medicine, Shimane 693-8501, Japan
4Division of Blood Transfusion, Shimane University Hospital, Shimane 693-8501, Japan
5Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

Received 1 September 2010; Accepted 19 October 2010

Academic Editor: Shih Hwa Chiou

Copyright © 2011 Seiji Fukuda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Altieri, “Survivin, versatile modulation of cell division and apoptosis in cancer,” Oncogene, vol. 22, no. 53, pp. 8581–8589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Altieri, “Validating survivin as a cancer therapeutic target,” Nature Reviews Cancer, vol. 3, no. 1, pp. 46–54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Fukuda and L. M. Pelus, “Survivin, a cancer target with an emerging role in normal adult tissues,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1087–1098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Fukuda, R. G. Foster, S. B. Porter, and L. M. Pelus, “The antiapoptosis protein survivin is associated with cell cycle entry of normal cord blood CD34+ cells and modulates cell cycle and proliferation of mouse hematopoietic progenitor cells,” Blood, vol. 100, no. 7, pp. 2463–2471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Fukuda and L. M. Pelus, “Elevation of Survivin levels by hematopoietic growth factors occurs in quiescent CD34+ hematopoietic stem and progenitor cells before cell cycle entry,” Cell Cycle, vol. 1, no. 5, pp. 322–326, 2002. View at Google Scholar · View at Scopus
  6. S. Fukuda and L. M. Pelus, “Regulation of the inhibitor-of-apoptosis family member survivin in normal cord blood and bone marrow CD34+ cells by hematopoietic growth factors: implication of survivin expression in normal hematopoiesis,” Blood, vol. 98, no. 7, pp. 2091–2100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Fukuda, C. R. Mantel, and L. M. Pelus, “Survivin regulates hematopoietic progenitor cell proliferation through p21WAF1/Cip1-dependent and—independent pathways,” Blood, vol. 103, no. 1, pp. 120–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C. G. Leung, Y. Xu, B. Mularski, H. Liu, S. Gurbuxani, and J. D. Crispino, “Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells,” Journal of Experimental Medicine, vol. 204, no. 7, pp. 1603–1611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Z. Carter, M. Milella, D. C. Altieri, and M. Andreeff, “Cytokine-regulated expression of survivin in myeloid leukemia,” Blood, vol. 97, no. 9, pp. 2784–2790, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Adida, C. Recher, E. Raffoux et al., “Expression and prognostic significance of survivin in de novo acute myeloid leukaemia,” British Journal of Haematology, vol. 111, no. 1, pp. 196–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Badran, A. Yoshida, Y. Wano et al., “Expression of the anti-apoptotic gene survivin in myelodysplastic syndrome,” International Journal of Oncology, vol. 22, no. 1, pp. 59–64, 2003. View at Google Scholar · View at Scopus
  12. D. G. Gilliland and J. D. Griffin, “The roles of FLT3 in hematopoiesis and leukemia,” Blood, vol. 100, no. 5, pp. 1532–1542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Levis, K. M. Murphy, R. Pham et al., “Internal tandem duplications of the FLT3 gene are present in leukemia stem cells,” Blood, vol. 106, no. 2, pp. 673–680, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Fukuda, P. Singh, A. Moh et al., “Survivin mediates aberrant hematopoietic progenitor cell proliferation and acute leukemia in mice induced by internal tandem duplication of Flt3,” Blood, vol. 114, no. 2, pp. 394–403, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. V. E. Velculescu, S. L. Madden, L. Zhang et al., “Analysis of human transcriptomes,” Nature Genetics, vol. 23, no. 4, pp. 387–388, 1999. View at Google Scholar · View at Scopus
  16. R. Majeti, M. W. Becker, Q. Tian et al., “Dysregulated gene expression networks in human acute myelogenous leukemia stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3396–3401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. M. Kelly, Q. Liu, J. L. Kutok, I. R. Williams, C. L. Boulton, and D. G. Gilliland, “FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model,” Blood, vol. 99, no. 1, pp. 310–318, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Cline, M. Smoot, E. Cerami et al., “Integration of biological networks and gene expression data using Cytoscape,” Nature Protocols, vol. 2, no. 10, pp. 2366–2382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. N. B. Ivanova, J. T. Dimos, C. Schaniel, J. A. Hackney, K. A. Moore, and I. R. Lemischka, “A stem cell molecutar signature,” Science, vol. 298, no. 5593, pp. 601–604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Asanuma, N. Tsuji, T. Endoh, A. Yagihashi, and N. Watanabe, “Survivin enhances fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells,” The Journal of Immunology, vol. 172, no. 6, pp. 3922–3929, 2004. View at Google Scholar · View at Scopus
  22. B. T. Takizawa, E. M. Uchio, J. J. Cohen, M. A. Wheeler, and R. M. Weiss, “Downregulation of survivin is associated with reductions in TNF receptors' mRNA and protein and alterations in nuclear factor kappa B signaling in urothelial cancer cells,” Cancer Investigation, vol. 25, no. 8, pp. 678–684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Y. Balkhi, M. Christopeit, Y. Chen, M. Geletu, and G. Behre, “AML1/ETO-induced survivin expression inhibits transcriptional regulation of myeloid differentiation,” Experimental hematology, vol. 36, no. 11, pp. 1449–1460, 2008. View at Google Scholar · View at Scopus
  24. W. Salz, D. Eisenberg, J. Plescia et al., “A survivin gene signature predicts aggressive tumor behavior,” Cancer Research, vol. 65, no. 9, pp. 3531–3534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kostrouchova, Z. Kostrouch, V. Saudek, J. Piatigorsky, and J. E. Rall, “BIR-1, a Caenorhabditis elegans homologue of Survivin, regulates transcription and development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5240–5245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Chen, S. Jin, S. K. Tahir et al., “Survivin enhances aurora-B kinase activity and localizes aurora-B in human cells,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 486–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. A. Bolton, W. Lan, S. E. Powers, M. L. McCleland, J. Kuang, and P. T. Stukenberg, “Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation,” Molecular Biology of the Cell, vol. 13, no. 9, pp. 3064–3077, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. J. Nowak and V. G. Corces, “Phosphorylation of histone H3 correlates with transcriptionally active loci,” Genes and Development, vol. 14, no. 23, pp. 3003–3013, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Li, Q. Lin, H.-G. Yoon et al., “Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor,” Molecular and Cellular Biology, vol. 22, no. 16, pp. 5688–5697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Cheung, K. G. Tanner, W. L. Cheung, P. Sassone-Corsi, J. M. Denu, and C. D. Allis, “Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation,” Molecular Cell, vol. 5, no. 6, pp. 905–915, 2000. View at Google Scholar · View at Scopus
  31. Y. Wei, L. Yu, J. Bowen, M. A. Gorovsky, and C. David Allis, “Phosphorylation of histone H3 is required for proper chromosome condensation and segregation,” Cell, vol. 97, no. 1, pp. 99–109, 1999. View at Google Scholar · View at Scopus
  32. R. H. Alvarez, V. Valero, and G. N. Hortobagyi, “Emerging targeted therapies for breast cancer,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3366–3379, 2010. View at Publisher · View at Google Scholar
  33. T. J.R. Harris and F. McCormick, “The molecular pathology of cancer,” Nature Reviews Clinical Oncology, vol. 7, no. 5, pp. 251–265, 2010. View at Publisher · View at Google Scholar
  34. C. K. Hahn, J. E. Berchuck, K. N. Ross et al., “Proteomic and genetic approaches identify Syk as an AML target,” Cancer Cell, vol. 16, no. 4, pp. 281–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Boehrer, L. Adès, T. Braun et al., “Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study,” Blood, vol. 111, no. 4, pp. 2170–2180, 2008. View at Publisher · View at Google Scholar · View at Scopus