Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 135186, 7 pages
http://dx.doi.org/10.1155/2012/135186
Research Article

Myeloid Antigen Expression in Childhood Acute Lymphoblastic Leukemia and Its Relevance for Clinical Outcome in Indonesian ALL-2006 Protocol

1Pediatric Hematology Oncology Division, Department of Pediatrics, Dr. Sardjito Hospital, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No. 1, Yogyakarta 55281, Indonesia
2Pediatric Oncology/Hematology Division, Department of Pediatrics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
3Department of Epidemiology and Biostatistics, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
4Department of Hematology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands

Received 12 May 2012; Accepted 15 September 2012

Academic Editor: Gertjan Kaspers

Copyright © 2012 Eddy Supriyadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Camós and D. Colomer, “Molecular biology in acute leukemia,” Clinical and Translational Oncology, vol. 8, no. 8, pp. 550–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Margolin, C. P. Steuber, and D. G. Poplack, “Acute lymphoblastic leukemia,” in Principles and Practice of Pediatric Oncology, P. A. Pizzo and D. G. Poplack, Eds., pp. 1605–1616, Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2006. View at Google Scholar
  3. T. Haferlach, W. Kern, S. Schnittger, and C. Schoch, “Modern diagnostics in acute leukemias,” Critical Reviews in Oncology/Hematology, vol. 56, no. 2, pp. 223–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Van Dongen, Immunophenotyping of Hematopoietic Malignancies, Departement of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands, 2003.
  5. F. M. Uckun, H. N. Sather, P. S. Gaynon et al., “Clinical features and treatment outcome of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children's Cancer Group,” Blood, vol. 90, no. 1, pp. 28–35, 1997. View at Google Scholar · View at Scopus
  6. M. Qadir, M. Barcos, C. C. Stewart, S. N. J. Sait, L. A. Ford, and M. R. Baer, “Routine immunophenotyping in acute leukemia: role in lineage assignment and reassignment,” Cytometry B, vol. 70, no. 5, pp. 329–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Bene, G. Castoldi, W. Knapp et al., “Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL),” Leukemia, vol. 9, no. 10, pp. 1783–1786, 1995. View at Google Scholar · View at Scopus
  8. M. C. Putti, R. Rondelli, M. G. Cocito et al., “Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88-91 studies,” Blood, vol. 92, no. 3, pp. 795–801, 1998. View at Google Scholar · View at Scopus
  9. M. L. Den Boer, P. Kapaun, R. Pieters, K. M. Kazemier, G. E. Janka-Schaub, and A. J. P. Veerman, “Myeloid antigen co-expression in childhood acute lymphoblastic leukaemia: relationship with in vitro drug resistance,” British Journal of Haematology, vol. 105, no. 4, pp. 876–882, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Wiersma, J. Ortega, E. Sobel, and K. I. Weinberg, “Clinical importance of myeloid-antigen expression in acute lymphoblastic leukemia of childhood,” The New England Journal of Medicine, vol. 324, no. 12, pp. 800–808, 1991. View at Google Scholar · View at Scopus
  11. C. H. Pui, F. G. Behm, B. Singh et al., “Myeloid-association antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy,” Blood, vol. 75, no. 1, pp. 198–202, 1990. View at Google Scholar · View at Scopus
  12. C. H. Pui, S. C. Raimondi, D. R. Head et al., “Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse,” Blood, vol. 78, no. 5, pp. 1327–1337, 1991. View at Google Scholar · View at Scopus
  13. W. D. Ludwig, A. Reiter, H. Loffler et al., “Immunophenotypic features of childhood and adult acute lymphoblastic leukemia (ALL): experience of the German Multicentre Trials ALL-BFM and GMALL,” Leukemia and Lymphoma, vol. 13, supplement 1, pp. 71–76, 1994. View at Google Scholar · View at Scopus
  14. A. Reiter, M. Schrappe, W. D. Ludwig et al., “Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86,” Blood, vol. 84, no. 9, pp. 3122–3133, 1994. View at Google Scholar · View at Scopus
  15. S. M. Ng, W. A. Ariffin, H. P. Lin, L. L. Chan, and Y. M. Chin, “Clinical features and treatment outcome of children with myeloid antigen coexpression in B-lineage acute lymphoblastic leukemia: a study of 151 Malaysian children,” Journal of Tropical Pediatrics, vol. 46, no. 2, pp. 73–78, 2000. View at Google Scholar · View at Scopus
  16. M. F. Greaves, L. C. Chan, and A. J. W. Furley, “Lineage promiscuity in hemopoietic differentiation and leukemia,” Blood, vol. 67, no. 1, pp. 1–11, 1986. View at Google Scholar · View at Scopus
  17. L. J. Smith, J. E. Curtis, H. A. Messner et al., “Lineage infidelity in acute leukemia,” Blood, vol. 61, no. 6, pp. 1138–1145, 1983. View at Google Scholar · View at Scopus
  18. A. S. Kurec, P. Belair, C. Stefanu, D. M. Barrett, R. L. Dubowy, and F. R. Davey, “Significance of aberrant immunophenotypes in childhood acute lymphoid leukemia,” Cancer, vol. 67, no. 12, pp. 3081–3086, 1991. View at Google Scholar · View at Scopus
  19. G. Basso, M. C. Putti, A. Cantu-Rajnoldi et al., “The immunophenotype in infant acute lymphoblastic leukaemia: correlation with clinical outcome. An Italian multicentre study (AIEOP),” British Journal of Haematology, vol. 81, no. 2, pp. 184–191, 1992. View at Google Scholar · View at Scopus
  20. M. R. Howard, L. Thomas, and M. M. Reid, “Variable detection of myeloid antigens in childhood acute lymphoblastic leukaemia,” Journal of Clinical Pathology, vol. 47, no. 11, pp. 1006–1009, 1994. View at Google Scholar · View at Scopus
  21. M. C. Béné, M. Bernier, G. Castoldi et al., “Impact of immunophenotyping on management of acute leukemias,” Haematologica, vol. 84, no. 11, pp. 1024–1034, 1999. View at Google Scholar · View at Scopus
  22. P. J. Fialkow, J. W. Singer, J. W. Adamson et al., “Acute nonlymphocytic leukemia: heterogeneity of stem cell origin,” Blood, vol. 57, no. 6, pp. 1068–1073, 1981. View at Google Scholar · View at Scopus
  23. J. Perentesis, N. K. C. Ramsay, R. Brunning et al., “Biphenotypic leukemia: immunologic and morphologic evidence for a common lymphoid-myeloid progenitor in humans,” Journal of Pediatrics, vol. 102, no. 1, pp. 63–67, 1983. View at Google Scholar · View at Scopus
  24. E. Mejstrikova, J. Volejnikova, E. Fronkova et al., “Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria,” Haematologica, vol. 95, no. 6, pp. 928–935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. J. Kaspers, G. Kardos, R. Pieters et al., “Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report,” Leukemia, vol. 8, no. 7, pp. 1224–1229, 1994. View at Google Scholar · View at Scopus
  26. J. Mirro, T. F. Zipf, C. H. Pui et al., “Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance,” Blood, vol. 66, no. 5, pp. 1115–1123, 1985. View at Google Scholar · View at Scopus