Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012 (2012), Article ID 141236, 11 pages
http://dx.doi.org/10.1155/2012/141236
Review Article

The Role of PTEN in Tumor Angiogenesis

Department of Clinical Research and Department of Nephrology and Hypertension, Inselspital, University of Bern Medical School, 3010 Bern, Switzerland

Received 20 April 2011; Accepted 1 July 2011

Academic Editor: Sundaram Ramakrishnan

Copyright © 2012 Stéphane Rodriguez and Uyen Huynh-Do. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Carmeliet, “Mechanisms of angiogenesis and arteriogenesis,” Nature Medicine, vol. 6, no. 4, pp. 389–395, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Jakobsson, C. A. Franco, K. Bentley et al., “Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting,” Nature Cell Biology, vol. 12, no. 10, pp. 943–953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Jain, “Molecular regulation of vessel maturation,” Nature Medicine, vol. 9, no. 6, pp. 685–693, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” The New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986. View at Google Scholar · View at Scopus
  5. P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Olsson, A. Dimberg, J. Kreuger, and L. Claesson-Welsh, “VEGF receptor signalling—in control of vascular function,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 359–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Dumont, G. Gradwohl, G. H. Fong et al., “Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo,” Genes and Development, vol. 8, no. 16, pp. 1897–1909, 1994. View at Google Scholar · View at Scopus
  8. T. N. Sato, Y. Tozawa, U. Deutsch et al., “Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation,” Nature, vol. 376, no. 6535, pp. 70–74, 1995. View at Google Scholar · View at Scopus
  9. C. Daly, V. Wong, E. Burova et al., “Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1),” Genes and Development, vol. 18, no. 9, pp. 1060–1071, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kuijper, C. J. Turner, and R. H. Adams, “Regulation of angiogenesis by Eph-ephrin interactions,” Trends in Cardiovascular Medicine, vol. 17, no. 5, pp. 145–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. J. Stephen, A. L. Fawkes, A. Verhoeve, G. Lemke, and A. Brown, “A critical role for the EphA3 receptor tyrosine kinase in heart development,” Developmental Biology, vol. 302, no. 1, pp. 66–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. G. Wilkinson, “Multiple roles of Eph receptors and ephrins in neural development,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 155–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Steinle, C. J. Meininger, R. Forough, G. Wu, M. H. Wu, and H. J. Granger, “Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43830–43835, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. H. U. Wang, Z. F. Chen, and D. J. Anderson, “Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4,” Cell, vol. 93, no. 5, pp. 741–753, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sawamiphak, S. Seidel, C. L. Essmann et al., “Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis,” Nature, vol. 465, no. 7297, pp. 487–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Oike, Y. Ito, K. Hamada et al., “Regulation of vasculogenesis and angiogenesis by EphB/ephrin-B2 signaling between endothelial cells and surrounding mesenchymal cells,” Blood, vol. 100, no. 4, pp. 1326–1333, 2002. View at Google Scholar · View at Scopus
  17. G. L. Wang, B. H. Jiang, E. A. Rue, and G. L. Semenza, “Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 12, pp. 5510–5514, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Ivan, K. Kondo, H. Yang et al., “HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing,” Science, vol. 292, no. 5516, pp. 464–468, 2001. View at Google Scholar · View at Scopus
  19. M. M. Baldewijns, I. J. H. van Vlodrop, P. B. Vermeulen, P. M. M. B. Soetekouw, M. van Engeland, and A. P. de Bruïne, “VHL and HIF signalling in renal cell carcinogenesis,” Journal of Pathology, vol. 221, no. 2, pp. 125–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Vihanto, J. Plock, D. Erni, B. M. Frey, F. J. Frey, and U. Huynh-Do, “Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin,” FASEB Journal, vol. 19, no. 12, pp. 1689–1691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Xu, D. Rodriguez, E. Petitclerc et al., “Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo,” Journal of Cell Biology, vol. 154, no. 5, pp. 1069–1079, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Whitelock, A. D. Murdoch, R. V. Iozzo, and P. A. Underwood, “The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases,” Journal of Biological Chemistry, vol. 271, no. 17, pp. 10079–10086, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Marsh, V. Coulon, K. L. Lunetta et al., “Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation,” Human Molecular Genetics, vol. 7, no. 3, pp. 507–515, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. L. C. Trotman, X. Wang, A. Alimonti et al., “Ubiquitination regulates PTEN nuclear import and tumor suppression,” Cell, vol. 128, no. 1, pp. 141–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. X. P. Zhou, D. J. Marsh, C. D. Morrison et al., “Germline inactivation of PTEN and dysregulation of the phosphoinositol-3- kinase/Akt pathway cause human Lhermitte-Duclos disease in adults,” American Journal of Human Genetics, vol. 73, no. 5, pp. 1191–1198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. X. P. Zhou, H. Hampel, H. Thiele et al., “Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes,” The Lancet, vol. 358, no. 9277, pp. 210–211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Varga, M. Pastore, T. Prior, G. E. Herman, and K. L. McBride, “The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly,” Genetics in Medicine, vol. 11, no. 2, pp. 111–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. S. Chun, M. S. Kim, and J. W. Park, “Oxygen-dependent and -independent regulation of HIF-1alpha,” Journal of Korean Medical Science, vol. 17, no. 5, pp. 581–588, 2002. View at Google Scholar · View at Scopus
  30. R. Kalluri and M. Zeisberg, “Fibroblasts in cancer,” Nature Reviews Cancer, vol. 6, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Murakami, Y. Zheng, M. Hirashima et al., “VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 658–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Morikawa, P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain, and D. M. McDonald, “Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors,” American Journal of Pathology, vol. 160, no. 3, pp. 985–1000, 2002. View at Google Scholar · View at Scopus
  33. I. Helfrich, L. Edler, A. Sucker et al., “Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma,” Clinical Cancer Research, vol. 15, no. 4, pp. 1384–1392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Holash, P. C. Maisonpierre, D. Compton et al., “Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF,” Science, vol. 284, no. 5422, pp. 1994–1998, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Huang, Y. Yamada, H. Kidoya et al., “EphB4 overexpression in B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis,” Cancer Research, vol. 67, no. 20, pp. 9800–9808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Kimura, Y. Kato, D. Sano et al., “Soluble form of ephrinB2 inhibits xenograft growth of squamous cell carcinoma of the head and neck,” International Journal of Oncology, vol. 34, no. 2, pp. 321–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Krasnoperov, S. R. Kumar, E. Ley et al., “Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth,” American Journal of Pathology, vol. 176, no. 4, pp. 2029–2038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Kumar, J. Singh, G. Xia et al., “Receptor tyrosine kinase EphB4 is a survival factor in breast cancer,” American Journal of Pathology, vol. 169, no. 1, pp. 279–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Masood, S. R. Kumar, U. K. Sinha et al., “EphB4 provides survival advantage to squamous cell carcinoma of the head and neck,” International Journal of Cancer, vol. 119, no. 6, pp. 1236–1248, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Martiny-Baron, T. Korff, F. Schaffner et al., “Inhibition of tumor growth and angiogenesis by soluble EphB4,” Neoplasia, vol. 6, no. 3, pp. 248–257, 2004. View at Google Scholar · View at Scopus
  41. S. A. Cunningham, M. N. Waxham, P. M. Arrate, and T. A. Brock, “Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding,” Journal of Biological Chemistry, vol. 270, no. 35, pp. 20254–20257, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. H. P. Gerber, A. McMurtrey, J. Kowalski et al., “Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway: requirement for Flk-1/KDR activation,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30336–30343, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, G. Z. Zheng, L. Z. Rui et al., “Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin- activated endothelial cells promote neural progenitor cell migration,” Journal of Neuroscience, vol. 26, no. 22, pp. 5996–6003, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. X. H. Guan, X. F. Lu, H. X. Zhang et al., “Phosphatidylinositol 3-kinase mediates pain behaviors induced by activation of peripheral ephrinBs/EphBs signaling in mice,” Pharmacology Biochemistry and Behavior, vol. 95, no. 3, pp. 315–324, 2010. View at Publisher · View at Google Scholar
  45. B. Vanhaesebroeck, S. J. Leevers, G. Panayotou, M. D. Waterfield, and M. D. Waterfield, “Phosphoinositide 3-kinases: a conserved family of signal transducers,” Trends in Biochemical Sciences, vol. 22, no. 7, pp. 267–272, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Maehama, G. S. Taylor, and J. E. Dixon, “PTEN and myotubularin: novel phosphoinositide phosphatases,” Annual Review of Biochemistry, vol. 70, pp. 247–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. L. C. Cantley and B. G. Neel, “New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4240–4245, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Gu, M. Tamura, R. Pankov et al., “Shc and FAK differentially regulate cell motility and directionality modulated by PTEN,” Journal of Cell Biology, vol. 146, no. 2, pp. 389–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Tamura, J. Gu, K. Matsumoto, S. I. Aota, R. Parsons, and K. M. Yamada, “Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN,” Science, vol. 280, no. 5369, pp. 1614–1617, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Raftopoulou, S. Etienne-Manneville, A. Self, S. Nicholls, and A. Hall, “Regulation of cell migration by the C2 domain of the tumor suppressor PTEN,” Science, vol. 303, no. 5661, pp. 1179–1181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. N. R. Leslie, X. Yang, C. P. Downes, and C. J. Weijer, “PtdIns(3,4,5)P3-dependent and -independent roles for PTEN in the control of cell migration,” Current Biology, vol. 17, no. 2, pp. 115–125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Meng, R. Henson, H. Wehbe-Janek, K. Ghoshal, S. T. Jacob, and T. Patel, “MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer,” Gastroenterology, vol. 133, no. 2, pp. 647–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Wang and X. Jiang, “Post-translational regulation of PTEN,” Oncogene, vol. 27, no. 41, pp. 5454–5463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Zundel, C. Schindler, D. Haas-Kogan et al., “Loss of PTEN facilitates HIF-1-mediated gene expression,” Genes and Development, vol. 14, no. 4, pp. 391–396, 2000. View at Google Scholar · View at Scopus
  55. A. V. Teichman, E. Compérat, S. Behnke, M. Storz, H. Moch, and P. Schraml, “VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma,” Modern Pathology, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. I. J. Frew, C. R. Thoma, S. Georgiev et al., “pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation,” EMBO Journal, vol. 27, no. 12, pp. 1747–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Fang, M. Ding, L. Yang, L. Z. Liu, and B. H. Jiang, “PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis,” Cellular Signalling, vol. 19, no. 12, pp. 2487–2497, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Tian, K. J. Nan, S. H. Wang et al., “PTEN regulates angiogenesis and VEGF expression through phosphatase-dependent and -independent mechanisms in HepG2 cells,” Carcinogenesis, vol. 31, no. 7, pp. 1211–1219, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Takei, Y. Saga, H. Mizukami et al., “Overexpression of PTEN in ovarian cancer cells suppresses i.p. dissemination and extends survival in mice,” Molecular Cancer Therapeutics, vol. 7, no. 3, pp. 704–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Wang, Z. Cheng, X. Yang et al., “Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma,” International Journal of Hematology, vol. 92, no. 1, pp. 83–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Zheng, H. Takahashi, Y. Murai et al., “Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma,” Anticancer Research, vol. 26, no. 5 A, pp. 3579–3583, 2006. View at Google Scholar · View at Scopus
  62. E. Giovannetti, N. Funel, G. J. Peters et al., “MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity,” Cancer Research, vol. 70, no. 11, pp. 4528–4538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. D. Sekuklu, M. T. A. Donoghue, and C. Spillane, “miR-21 as a key regulator of oncogenic processes,” Biochemical Society Transactions, vol. 37, part 4, pp. 918–925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. L. M. DeBusk, D. E. Hallahan, and P. C. Lin, “Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway,” Experimental Cell Research, vol. 298, no. 1, pp. 167–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. C. M. Findley, M. J. Cudmore, A. Ahmed, and C. D. Kontos, “VEGF induces Tie2 shedding via a phosphoinositide 3-kinase/Akt-dependent pathway to modulate Tie2 signaling,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 12, pp. 2619–2626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Frattini, P. Saletti, E. Romagnani et al., “PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients,” British Journal of Cancer, vol. 97, no. 8, pp. 1139–1145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Razis, E. Briasoulis, E. Vrettou et al., “Potential value of PTEN in predicting cetuximab response in colorectal cancer: an exploratory study,” BMC Cancer, vol. 8, p. 234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Sartore-Bianchi, F. Di Nicolantonio, M. Nichelatti et al., “Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer,” PLoS ONE, vol. 4, no. 10, Article ID e7287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Sartore-Bianchi, M. Martini, F. Molinari et al., “PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies,” Cancer Research, vol. 69, no. 5, pp. 1851–1857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Laurent-Puig, A. Cayre, G. Manceau et al., “Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer,” Journal of Clinical Oncology, vol. 27, no. 35, pp. 5924–5930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Loupakis, L. Pollina, I. Stasi et al., “PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 27, no. 16, pp. 2622–2629, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Perrone, A. Lampis, M. Orsenigo et al., “PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients,” Annals of Oncology, vol. 20, no. 1, pp. 84–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Berns, H. M. Horlings, B. T. Hennessy et al., “A Functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer,” Cancer Cell, vol. 12, no. 4, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Dave, I. Migliaccio, M. C. Gutierrez et al., “Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2—overexpressing locally advanced breast cancers,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 166–173, 2011. View at Publisher · View at Google Scholar
  75. Y. Nagata, K. H. Lan, X. Zhou et al., “PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients,” Cancer Cell, vol. 6, no. 2, pp. 117–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Tokunaga, Y. Kimura, K. Mashino et al., “Activation of PI3K/Akt signaling and hormone resistance in breast cancer,” Breast Cancer, vol. 13, no. 2, pp. 137–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Christodoulou, I. Kostopoulos, H. P. Kalofonos et al., “Trastuzumab combined with pegylated liposomal doxorubicin in patients with metastatic breast cancer: phase II study of the Hellenic Cooperative Oncology Group (HeCOG) with biomarker evaluation,” Oncology, vol. 76, no. 4, pp. 275–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. F. J. Esteva, H. Guo, S. Zhang et al., “PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer,” American Journal of Pathology, vol. 177, no. 4, pp. 1647–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. D. A. Haas-Kogan, M. D. Prados, T. Tihan et al., “Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib,” Journal of the National Cancer Institute, vol. 97, no. 12, pp. 880–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. I. K. Mellinghoff, M. Y. Wang, I. Vivanco et al., “Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors,” The New England Journal of Medicine, vol. 353, no. 19, pp. 2012–2024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. M. D. Prados, S. M. Chang, N. Butowski et al., “Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma,” Journal of Clinical Oncology, vol. 27, no. 4, pp. 579–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. C. L. Nigro, M. Monteverde, M. Riba et al., “Expression profiling and long lasting responses to chemotherapy in metastatic gastric cancer,” International Journal of Oncology, vol. 37, no. 5, pp. 1219–1228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. D. O'Toole, A. Couvelard, V. Rebours et al., “Molecular markers associated with response to chemotherapy in gastroentero-pancreatic neuroendocrine tumors,” Endocrine-Related Cancer, vol. 17, no. 4, pp. 847–856, 2010. View at Publisher · View at Google Scholar
  84. M. L. Sos, M. Koker, B. A. Weir et al., “PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR,” Cancer Research, vol. 69, no. 8, pp. 3256–3261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Uramoto, H. Shimokawa, T. Hanagiri, M. Kuwano, and M. Ono, “Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma,” Lung Cancer. In press. View at Publisher · View at Google Scholar
  86. M. A. T. Hildebrandt, H. Yang, M. C. Hung et al., “Genetic variations in the PI3K/PTEN/AKT/mTOR pathway are associated with clinical outcomes in esophageal cancer patients treated with chemoradiotherapy,” Journal of Clinical Oncology, vol. 27, no. 6, pp. 857–871, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Vazquez and P. Devreotes, “Regulation of PTEN function as a PIP3 gatekeeper through membrane interaction,” Cell Cycle, vol. 5, no. 14, pp. 1523–1527, 2006. View at Google Scholar · View at Scopus
  88. J. R. Molina, F. C. Morales, Y. Hayashi, K. D. Aldape, and M. M. Georgescu, “Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation,” Cancer Research, vol. 70, no. 17, pp. 6697–6703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Takahashi, F. C. Morales, E. L. Kreimann, and M. M. Georgescu, “PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling,” EMBO Journal, vol. 25, no. 4, pp. 910–920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. C. S. Lazar, C. M. Cresson, D. A. Lauffenburger, and G. N. Gill, “The Na+/H+ exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface,” Molecular Biology of the Cell, vol. 15, no. 12, pp. 5470–5480, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. I. Vivanco, D. Rohle, M. Versele et al., “The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6459–6464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. E. V. Wong, J. A. Kerner, and D. G. Jay, “Convergent and divergent signaling mechanisms of growth cone collapse by ephrinA5 and slit2,” Journal of Neurobiology, vol. 59, no. 1, pp. 66–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Brisbin, J. Liu, J. Boudreau, J. Peng, M. Evangelista, and I. Chin-Sang, “A role for C. elegans Eph RTK signaling in PTEN regulation,” Developmental Cell, vol. 17, no. 4, pp. 459–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Bussolati, I. Deambrosis, S. Russo, M. C. Deregibus, and G. Camussi, “Altered angiogenesis and survival in human tumor-derived endothelial cells,” FASEB Journal, vol. 17, no. 9, pp. 1159–1161, 2003. View at Google Scholar · View at Scopus
  95. A. J. Trimboli, C. Z. Cantemir-Stone, F. Li et al., “Pten in stromal fibroblasts suppresses mammary epithelial tumours,” Nature, vol. 461, no. 7267, pp. 1084–1091, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Fosbrink, F. Niculescu, V. Rus, M. L. Shin, and H. Rus, “C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1,” Journal of Biological Chemistry, vol. 281, no. 28, pp. 19009–19018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Nakao, M. Shiota, Y. Tatemoto, Y. Izumi, and H. Iwao, “Pravastatin induces rat aortic endothelial cell proliferation and migration via activation of PI3K/Akt/mTOR/p70 S6 kinase signaling,” Journal of Pharmacological Sciences, vol. 105, no. 4, pp. 334–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Zheng, T. Dai, B. Zhou et al., “SDF-1α/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway,” Atherosclerosis, vol. 201, no. 1, pp. 36–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. A. S. Tarnawski, R. Pai, T. Tanigawa, T. Matysiak-Budnik, and A. Ahluwalia, “PTEN silencing reverses aging-related impairment of angiogenesis in microvascular endothelial cells,” Biochemical and Biophysical Research Communications, vol. 394, no. 2, pp. 291–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Cao, J. Schulte, A. Knight et al., “Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity,” EMBO Journal, vol. 28, no. 10, pp. 1505–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. K. M. Connor, S. Subbaram, K. J. Regan et al., “Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16916–16924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. A. de Luca, F. Sanna, M. Sallese et al., “Methionine sulfoxide reductase A down-regulation in human breast cancer cells results in a more aggressive phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18628–18633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Garrido-Urbani, S. Jemelin, C. Deffert et al., “Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism,” PLoS ONE, vol. 6, no. 2, article e14665, 2011. View at Publisher · View at Google Scholar
  105. J. E. Church, J. Qian, S. Kumar et al., “Inhibition of endothelial nitric oxide synthase by the lipid phosphatase PTEN,” Vascular Pharmacology, vol. 52, no. 5-6, pp. 191–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Koistinen, T. Siitonen, P. Mäntymaa et al., “Regulation of the acute myeloid leukemia cell line OCI/AML-2 by endothelial nitric oxide synthase under the control of a vascular endothelial growth factor signaling system,” Leukemia, vol. 15, no. 9, pp. 1433–1441, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Cai, S. Ahmad, W. G. Jiang et al., “Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells,” Diabetes, vol. 52, no. 12, pp. 2959–2968, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Kumar, Y. Ning, and P. J. Polverini, “Endothelial cells expressing Bcl-2 promotes tumor metastasis by enhancing tumor angiogenesis, blood vessel leakiness and tumor invasion,” Laboratory Investigation, vol. 88, no. 7, pp. 740–749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. M. J. Park, H. J. Kwak, H. C. Lee et al., “Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor,” Journal of Biological Chemistry, vol. 282, no. 42, pp. 30485–30496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Bussolati, M. C. Deregibus, and G. Camussi, “Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies,” Current Vascular Pharmacology, vol. 8, no. 2, pp. 220–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. W. C. M. Dempke and V. Heinemann, “Resistance to EGF-R (erbB-1) and VEGF-R modulating agents,” European Journal of Cancer, vol. 45, no. 7, pp. 1117–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Alessi, D. Leali, M. Camozzi, A. Cantelmo, A. Albini, and M. Presta, “Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist,” European Cytokine Network, vol. 20, no. 4, pp. 225–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. S. I. Ueda, Y. Basaki, M. Yoshie et al., “PTEN/Akt signaling through epidermal growth factor receptor is prerequisite for angiogenesis by hepatocellular carcinoma cells that is susceptible to inhibition by gefitinib,” Cancer Research, vol. 66, no. 10, pp. 5346–5353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. H. Shi, L. Bingle, L. H. Gong, Y. X. Wang, K. P. Corke, and W. G. Fang, “Basic FGF augments hypoxia induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells,” Pathology, vol. 39, no. 4, pp. 396–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. D. Faratian, A. Goltsov, G. Lebedeva et al., “Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab,” Cancer Research, vol. 69, no. 16, pp. 6713–6720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. F. V. Negri, C. Bozzetti, C. A. Lagrasta et al., “PTEN status in advanced colorectal cancer treated with cetuximab,” British Journal of Cancer, vol. 102, no. 1, pp. 162–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. E. Martinelli, T. Troiani, F. Morgillo et al., “Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells,” Clinical Cancer Research, vol. 16, no. 20, pp. 4990–5001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. E. E. Cohen, D. W. Davis, T. G. Karrison et al., “Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study,” The Lancet Oncology, vol. 10, no. 3, pp. 247–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. J. A. Engelman, “Targeting PI3K signalling in cancer: opportunities, challenges and limitations,” Nature Reviews Cancer, vol. 9, no. 8, pp. 550–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Marone, V. Cmiljanovic, B. Giese, and M. P. Wymann, “Targeting phosphoinositide 3-kinase—moving towards therapy,” Biochimica et Biophysica Acta, vol. 1784, no. 1, pp. 159–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Anai, S. Goodison, K. Shiverick, K. Iczkowski, M. Tanaka, and C. J. Rosser, “Combination of PTEN gene therapy and radiation inhibits the growth of human prostate cancer xenografts,” Human Gene Therapy, vol. 17, no. 10, pp. 975–984, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. J. S. Lee, J. H. Lee, H. Poo et al., “Growth inhibitory effect of triple anti-tumor gene transfer using Semliki Forest virus vector in glioblastoma cells,” International Journal of Oncology, vol. 28, no. 3, pp. 649–654, 2006. View at Google Scholar · View at Scopus