Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 192464, 23 pages
http://dx.doi.org/10.1155/2012/192464
Review Article

The Role of Nutraceuticals in Chemoprevention and Chemotherapy and Their Clinical Outcomes

1Department of Biology, University of Alabama at Birmingham, 175A Campbell Hall, 1300 University Blvd, Birmingham, AL 35294-1170, USA
2Department of Math and Sciences, Alabama State University, P.O. Box 271, Montgomery, AL 36101-0271, USA
3Clinical Nutrition Research Center, 402 Webb Nutrition Sciences Building, 1675 University Blvd, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
4Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, North Pavilion 2500, Birmingham, AL 35294, USA
5Center for Aging, University of Alabama at Birmingham, 933 South 19th Street, Room 201, Community Health Services Building, Birmingham, AL 35294-2041, USA
6Nutrition Birmingham Obesity Research Center, University of Alabama at Birmingham, 402 Webb Nutrition Sciences Building, 1675 University Blvd, Birmingham, AL 35294-3360, USA

Received 30 June 2011; Accepted 25 August 2011

Academic Editor: Julian J. Raffoul

Copyright © 2012 Sabita N. Saldanha and Trygve O. Tollefsbol. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Hahn, S. K. Dessain, M. W. Brooks et al., “Enumeration of the simian virus 40 early region elements necessary for human cell transformation,” Molecular and Cellular Biology, vol. 22, no. 7, pp. 2111–2123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. W. C. Hahn, C. M. Counter, A. S. Lundberg, R. L. Beijersbergen, M. W. Brooks, and R. A. Weinberg, “Creation of human tumour cells with defined genetic elements,” Nature, vol. 400, no. 6743, pp. 464–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Elenbaas, L. Spirio, F. Koerner et al., “Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells,” Genes and Development, vol. 15, no. 1, pp. 50–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 8, pp. 1893–1907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar
  6. G. Fernandes, “The influence of diet and environment,” Current Opinion in Immunology, vol. 2, no. 2, pp. 275–281, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. G. J. Kelloff, J. A. Crowell, V. E. Steele et al., “Progress in cancer chemoprevention: development of diet-derived chemopreventive agents,” Journal of Nutrition, vol. 130, no. 2, supplement, pp. 467S–471S, 2000. View at Google Scholar · View at Scopus
  8. J. Krzyzanowska, A. Czubacka, and W. Oleszek, “Dietary phytochemicals and human health,” Advances in Experimental Medicine and Biology, vol. 698, pp. 74–98, 2010. View at Publisher · View at Google Scholar
  9. C. A. Lamartiniere, M. S. Cotroneo, W. A. Fritz, J. Wang, R. Mentor-Marcel, and A. Elgavish, “Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate,” Journal of Nutrition, vol. 132, no. 3, pp. 552S–558S, 2002. View at Google Scholar · View at Scopus
  10. C. A. Lamartiniere, “Protection against breast cancer with genistein: a component of soy,” American Journal of Clinical Nutrition, vol. 71, no. 6, supplement, pp. 1705S–1709S, 2000. View at Google Scholar
  11. A. Sayeed, S. D. Konduri, W. Liu, S. Bansal, F. Li, and G. M. Das, “Estrogen receptor α inhibits p53-mediated transcriptional repression: implications for the regulation of apoptosis,” Cancer Research, vol. 67, no. 16, pp. 7746–7755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Stettner, S. Kaulfuß, P. Burfeind et al., “The relevance of estrogen receptor-β expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment,” Molecular Cancer Therapeutics, vol. 6, no. 10, pp. 2626–2633, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Tang, X. Zhu, S. Liu, R. C. Nicholson, and X. Ni, “Phytoestrogens induce differential estrogen receptor β-mediated responses in transfected MG-63 cells,” Endocrine, vol. 34, no. 1-3, pp. 29–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Breithofer, K. Graumann, M. S. Scicchitano, S. K. Karathanasis, T. R. Butt, and A. Jungbauer, “Regulation of human estrogen receptor by phytoestrogens in yeast and human cells,” Journal of Steroid Biochemistry and Molecular Biology, vol. 67, no. 5-6, pp. 421–429, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Barnes, “Phytoestrogens and breast cancer,” Bailliere's Clinical Endocrinology and Metabolism, vol. 12, no. 4, pp. 559–579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Akimoto, T. Nonaka, and H. Ishikawa, “Genistein, a tyrosine kinase inhibitor, enhanced radiosensitivity in human esophageal cancer cell lines in vitro: possible involvement of inhibition of survival signal transduction pathways,” International Journal of Radiation Oncology Biology Physics, vol. 50, no. 1, pp. 195–201, 2001. View at Publisher · View at Google Scholar
  17. S. M. Gadgeel, S. Ali, P. A. Philip, A. Wozniak, and F. H. Sarkar, “Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines,” Cancer, vol. 115, no. 10, pp. 2165–2176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Song, C. W. Li, A. M. Labaff et al., “Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 68–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Nakamura, Y. Wang, T. Kurita, H. Adomat, G. R. Cunha, and Y. Wang, “Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer,” PLoS One, vol. 6, no. 5, Article ID e20034, 2011. View at Publisher · View at Google Scholar
  20. M. Li, J. Zhou, X. Gu, Y. Wang, X. J. Huang, and C. Yan, “Quantitative capillary electrophoresis and its application in analysis of alkaloids in tea, coffee, coca cola, and theophylline tablets,” Journal of Separation Science, vol. 32, no. 2, pp. 267–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Sun, “D-limonene: safety and clinical applications,” Alternative Medicine Review, vol. 12, no. 3, pp. 259–264, 2007. View at Google Scholar · View at Scopus
  22. S. V. Singh, “Impact of garlic organosulfides on p21H-ras processing1,2,” Journal of Nutrition, vol. 131, no. 3, pp. 1046S–1048S, 2001. View at Google Scholar · View at Scopus
  23. J. A. Milner, “Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation: garlic and carcinogenesis,” Advances in Experimental Medicine and Biology, vol. 492, pp. 69–81, 2001. View at Google Scholar · View at Scopus
  24. J. A. Milner, “A historical perspective on garlic and cancer,” Journal of Nutrition, vol. 131, no. 3, pp. 1027S–1031S, 2001. View at Google Scholar · View at Scopus
  25. J. A. Milner, S. S. McDonald, D. E. Anderson, and P. Greenwald, “Molecular targets for nutrients involved with cancer prevention,” Nutrition and Cancer, vol. 41, no. 1-2, pp. 1–16, 2001. View at Google Scholar · View at Scopus
  26. B. B. Aggarwal and H. Ichikawa, “Molecular targets and anticancer potential of indole-3-carbinol and its derivatives,” Cell Cycle, vol. 4, no. 9, pp. 1201–1215, 2005. View at Google Scholar · View at Scopus
  27. J. H. Kim, C. Xu, Y. S. Keum, B. Reddy, A. Conney, and A. N. T. Kong, “Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with β-phenylethyl isothiocyanate and curcumin,” Carcinogenesis, vol. 27, no. 3, pp. 475–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Shen, O. K. Tin, R. Hu et al., “Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in Apc Min/+ mouse,” Cancer Research, vol. 67, no. 20, pp. 9937–9944, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. D. M. Gustin, K. A. Rodvold, J. A. Sosman et al., “Single-dose pharmacokinetic study of lycopene delivered in a well-defined food-based lycopene delivery system (tomato paste-oil mixture) in healthy adult male subjects,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 5, pp. 850–860, 2004. View at Google Scholar · View at Scopus
  30. Y. H. Kao, R. A. Hiipakka, and S. Liao, “Modulation of endocrine systems and food intake by green tea epigallocatechin gallate,” Endocrinology, vol. 141, no. 3, pp. 980–987, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. S. N. Tang, C. Singh, D. Nall, D. Meeker, S. Shankar, and R. K. Srivastava, “The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition,” Journal of Molecular Signaling, vol. 5, no. 14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. K. Vareed, M. Kakarala, M. T. Ruffin et al., “Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1411–1417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. X. J. Luo, J. Peng, and Y. J. Li, “Recent advances in the study on capsaicinoids and capsinoids,” European Journal of Pharmacology, vol. 650, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. S. Aiyer and R. C. Gupta, “Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism,” Cancer Prevention Research, vol. 3, no. 6, pp. 727–737, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Aiyer, C. Srinivasan, and R. C. Gupta, “Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats,” Nutrition and Cancer, vol. 60, no. 2, pp. 227–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Y. O. Chen and J. B. Blumberg, “Phytochemical composition of nuts,” Asia Pacific Journal of Clinical Nutrition, vol. 17, no. 1, pp. 329–332, 2008. View at Google Scholar · View at Scopus
  37. K. Y. Wang, “Study on the qualitative and quantitative methods of gallic acid in pomegranate rind,” Zhongguo Zhongyao Zazhi, vol. 30, no. 15, pp. 1171–1172, 2005. View at Google Scholar · View at Scopus
  38. M. H. Pan, Y. H. Chang, V. Badmaev, K. Nagabhushanam, and C. T. Ho, “Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells,” Journal of Agricultural and Food Chemistry, vol. 55, no. 19, pp. 7777–7785, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. P. L. Bhat and J. M. Pezzuto, “Resveratrol exhibits cytostatic and antiestrogenic properties with human endometrial adenocarcinoma (Ishikawa) cells,” Cancer Research, vol. 61, no. 16, pp. 6137–6144, 2001. View at Google Scholar · View at Scopus
  40. E. Anupongsanugool, S. Teekachunhatean, N. Rojanasthien, S. Pongsatha, and C. Sangdee, “Pharmacokinetics of isoflavones, daidzein and genistein, after ingestion of soy beverage compared with soy extract capsules in postmenopausal Thai women,” BMC Clinical Pharmacology, vol. 5, article no. 2, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Vareed, M. Kakarala, M. T. Ruffin et al., “Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1411–1417, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. J. Moon, L. Wang, R. DiCenzo, and M. E. Morris, “Quercetin pharmacokinetics in humans,” Biopharmaceutics and Drug Disposition, vol. 29, no. 4, pp. 205–217, 2008. View at Publisher · View at Google Scholar
  43. D. J. Boocock, G. E. S. Faust, K. R. Patel et al., “Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 6, pp. 1246–1252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Boocock, K. R. Patel, G. E.S. Faust et al., “Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography,” Journal of Chromatography B, vol. 848, no. 2, pp. 182–187, 2007. View at Publisher · View at Google Scholar
  45. M. Vermeulen, I. W.A.A. Klöpping-Ketelaars, R. Van Den Berg, and W. H.J. Vaes, “Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10505–10509, 2008. View at Publisher · View at Google Scholar
  46. G. Williamson, F. Dionisi, and M. Renouf, “Flavanols from green tea and phenolic acids from coffee: critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages,” Molecular Nutrition and Food Research, vol. 55, no. 6, pp. 864–873, 2011. View at Publisher · View at Google Scholar
  47. D. F. Hargreaves, C. S. Potten, C. Harding et al., “Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 11, pp. 4017–4024, 1999. View at Google Scholar · View at Scopus
  48. H. S. Cross, E. Kállay, D. Lechner, W. Gerdenitsch, H. Adlercreutz, and H. J. Armbrecht, “Phytoestrogens and vitamin D metabolism: a new concept for the prevention and therapy of colorectal, prostate, and mammary carcinomas,” Journal of Nutrition, vol. 134, no. 5, pp. 1207S–1212S, 2004. View at Google Scholar · View at Scopus
  49. P. G. Brooks, “Epidemiology and risk factors in breast cancer. Can we change the odds?” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 27, no. 11, pp. 670–674, 1982. View at Google Scholar · View at Scopus
  50. K. B. Bouker and L. Hilakivi-Clarke, “Genistein: does it prevent or promote breast cancer?” Environmental Health Perspectives, vol. 108, no. 8, pp. 701–708, 2000. View at Google Scholar · View at Scopus
  51. P. J. Magee, H. McGlynn, and I. R. Rowland, “Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro,” Cancer Letters, vol. 208, no. 1, pp. 35–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Smith, D. Sepkovic, H. L. Bradlow, and K. J. Auborn, “3,3'-Diindolylmethane and genistein decrease the adverse effects of estrogen in LNCaP and PC-3 prostate cancer cells,” Journal of Nutrition, vol. 138, no. 12, pp. 2379–2385, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Kumar, V. Verma, A. Sarswat et al., “Selective estrogen receptor modulators regulate stromal proliferation in human benign prostatic hyperplasia by multiple beneficial mechanisms-action of two new agents,” Investigational New Drugs, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Hsu, T. M. Bray, W. G. Helferich, D. R. Doerge, and E. Ho, “Differential effects of whole soy extract and soy isoflavones on apoptosis in prostate cancer cells,” Experimental Biology and Medicine, vol. 235, no. 1, pp. 90–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. S. Craft, L. Xu, D. Romero, C. P. H. Vary, and R. C. Bergan, “Genistein induces phenotypic reversion of endoglin deficiency in human prostate cancer cells,” Molecular Pharmacology, vol. 73, no. 1, pp. 235–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Zhu, W. Yan, H. C. He et al., “Inhibition of proliferation, invasion, and migration of prostate cancer cells by downregulating elongation factor-1α expression,” Molecular Medicine, vol. 15, no. 11-12, pp. 363–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Jarred, M. Keikha, C. Dowling et al., “Induction of apoptosis in low to moderate-grade human prostate carcinoma by red clover-derived dietary isoflavones,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 12, pp. 1689–1696, 2002. View at Google Scholar · View at Scopus
  58. Y. Nagata, T. Sonoda, M. Mori et al., “Dietary isoflavones may protect against prostate cancer in Japanese men,” Journal of Nutrition, vol. 137, no. 8, pp. 1974–1979, 2007. View at Google Scholar · View at Scopus
  59. C. J. Rosser, “Prostate cancer—to screen, or not to screen, is that the question?” BMC Urology, vol. 8, no. 1, article 20, pp. 1–3, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. W. deVere White, A. Tsodikov, E. C. Stapp, S. E. Soares, H. Fujii, and R. M. Hackman, “Effects of a high dose, aglycone-rich soy extract on prostate-specific antigen and serum isoflavone concentrations in men with localized prostate cancer,” Nutrition and Cancer, vol. 62, no. 8, pp. 1036–1043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. C. D. Gardner, B. Oelrich, J. P. Liu, D. Feldman, A. A. Franke, and J. D. Brooks, “Prostatic soy isoflavone concentrations exceed serum levels after dietary supplementation,” Prostate, vol. 69, no. 7, pp. 719–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. H. H. S. Chow, D. Salazar, and I. A. Hakim, “Pharmacokinetics of perillic acid in humans after a single dose administration of a citrus preparation rich in d-Limonene content,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 11, pp. 1472–1476, 2002. View at Google Scholar · View at Scopus
  63. B. B. Aggarwal, S. Shishodia, Y. Takada et al., “Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice,” Clinical Cancer Research, vol. 11, no. 20, pp. 7490–7498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. H. Cheah, F. J. Nordin, R. Sarip et al., “Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231,” Cancer Cell International, vol. 9, no. 1, article 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. D. Altenburg, A. A. Bieberich, C. Terry et al., “A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone,” BMC Cancer, vol. 11, no. 149, pp. 1–16, 2011. View at Publisher · View at Google Scholar
  66. S. P. Verma, B. R. Goldin, and P. S. Lin, “The inhibition of the estrogenic effects of pesticides and environmental chemicals by curcumin and isoflavonoids,” Environmental Health Perspectives, vol. 106, no. 12, pp. 807–812, 1998. View at Google Scholar · View at Scopus
  67. T. Andjelkovic, M. Pesic, J. Bankovic, N. Tanic, I. D. Markovic, and S. Ruzdijic, “Synergistic effects of the purine analog sulfinosine and curcumin on the multidrug resistant human non-small cell lung carcinoma cell line (NCI-H460/R),” Cancer Biology and Therapy, vol. 7, no. 7, pp. 1024–1032, 2008. View at Google Scholar · View at Scopus
  68. S. Lev-Ari, L. Strier, D. Kazanov et al., “Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells,” Clinical Cancer Research, vol. 11, no. 18, pp. 6738–6744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. I. Aroch, S. Kraus, I. Naumov et al., “Chemopreventive effects of Coltect, a novel dietary supplement, alone and in combination with 5-aminosalicylic acid in 1,2-dimethylhydrazine-induced colon cancer in rats,” Therapeutic Advances in Gastroenterology, vol. 3, no. 5, pp. 281–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. T. O. Khor, Y. S. Keum, W. Lin et al., “Combined inhibitory effects of curcumin and phenethyl isothiocyanate on the growth of human PC-3 prostate xenografts in immunodeficient mice,” Cancer Research, vol. 66, no. 2, pp. 613–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Ślusarz, N. S. Shenouda, M. S. Sakla et al., “Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer,” Cancer Research, vol. 70, no. 8, pp. 3382–3390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Rabi and A. Bishayee, “d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis,” Journal of Carcinogenesis, vol. 8, no. 9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Canene-Adams, B. L. Lindshield, S. Wang, E. H. Jeffery, S. K. Clinton, and J. W. Erdman, “Combinations of tomato and broccoli enhance antitumor activity in dunning R3327-H prostate adenocarcinomas,” Cancer Research, vol. 67, no. 2, pp. 836–843, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. K. Campbell, K. Canene-Adams, B. L. Lindshield, T. W. M. Boileau, S. K. Clinton, and J. W. Erdman, “Tomato phytochemicals and prostate cancer risk,” Journal of Nutrition, vol. 134, no. 12, supplement, pp. 3486S–3492S, 2004. View at Google Scholar · View at Scopus
  75. L. Tang, T. Jin, X. Zeng, and J. S. Wang, “Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in BALB/c nude mice,” Journal of Nutrition, vol. 135, no. 2, pp. 287–290, 2005. View at Google Scholar · View at Scopus
  76. A. Hayashi, A. C. Gillen, and J. R. Lott, “Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in balb-c mice,” Alternative Medicine Review, vol. 5, no. 6, pp. 546–552, 2000. View at Google Scholar · View at Scopus
  77. A. Schlachterman, F. Valle, K. M. Wall et al., “Combined resveratrol, quercetin, and catechin treatment reduces breast tumor growth in a nude mouse model,” Translational Oncology, vol. 1, no. 1, pp. 19–27, 2008. View at Google Scholar
  78. N. Singh, M. Nigam, V. Ranjan, R. Sharma, A. K. Balapure, and S. K. Rath, “Caspase mediated enhanced apoptotic action of cyclophosphamideand resveratrol-treated cf-7 cells,” Journal of Pharmacological Sciences, vol. 109, no. 4, pp. 473–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Wolter and J. Stein, “Resveratrol enhances the differentiation induced by butyrate in Caco-2 colon cancer cells,” Journal of Nutrition, vol. 132, no. 7, pp. 2082–2086, 2002. View at Google Scholar · View at Scopus
  80. J. Y. Chan, S. P. Meng, M. V. Clement, S. Pervaiz, and C. L. Shao, “Resveratrol displays converse dose-related effects on 5-fluorouracilevoked colon cancer cell apoptosis: the roles of caspase-6 and p53,” Cancer Biology and Therapy, vol. 7, no. 8, pp. 1305–1312, 2008. View at Google Scholar · View at Scopus
  81. C. E. Harper, L. M. Cook, B. B. Patel et al., “Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats,” Prostate, vol. 69, no. 15, pp. 1668–1682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Z. Fang, D. Chen, Y. Sun, Z. Jin, J. K. Christman, and C. S. Yang, “Reversal of hypermethylation and reactivation of p16INK4a, RARβ, and MGMT genes by genistein and other isoflavones from soy,” Clinical Cancer Research, vol. 11, no. 19 I, pp. 7033–7041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Hutzen, W. Willis, S. Jones et al., “Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells,” Cancer Cell International, vol. 9, no. 24, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. V. Svehlikova, S. Wang, J. Jakubíkova, G. Williamson, R. Mithen, and Y. Bao, “Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells,” Carcinogenesis, vol. 25, no. 9, pp. 1629–1637, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Pappa, J. Strathmann, M. Löwinger, H. Bartsch, and C. Gerhäuser, “Quantitative combination effects between sulforaphane and 3,3'-diindolylmethane on proliferation of human colon cancer cells in vitro,” Carcinogenesis, vol. 28, no. 7, pp. 1471–1477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Li, S. Upadhyay, M. Bhuiyan, and F. H. Sarkar, “Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein,” Oncogene, vol. 18, no. 20, pp. 3166–3172, 1999. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. C. Chang, M. G. Nair, and J. L. Nitiss, “Metabolites of daidzein and genistein and their biological activities,” Journal of Natural Products, vol. 58, no. 12, pp. 1901–1905, 1995. View at Google Scholar · View at Scopus
  88. S. Swami, A. V. Krishnan, D. M. Peehl, and D. Feldman, “Genistein potentiates the growth inhibitory effects of 1,25- dihydroxyvitamin D3 in DU145 human prostate cancer cells: role of the direct inhibition of CYP24 enzyme activity,” Molecular and Cellular Endocrinology, vol. 241, no. 1-2, pp. 49–61, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Kállay, H. Adlercreutz, H. Farhan et al., “Phytoestrogens regulate vitamin D metabolism in the mouse colon: relevance for colon tumor prevention and therapy,” Journal of Nutrition, vol. 132, no. 11, supplement, pp. 3490S–3493S, 2002. View at Google Scholar
  90. Z. Wang, Y. Zhang, S. Banerjee, Y. Li, and F. H. Sarkar, “Inhibition of nuclear factor κB activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells,” International Journal of Cancer, vol. 118, no. 8, pp. 1930–1936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. M. R. Sartippour, Z. M. Shao, D. Heber et al., “Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells,” Journal of Nutrition, vol. 132, no. 8, pp. 2307–2311, 2002. View at Google Scholar · View at Scopus
  92. S. Pianetti, S. Guo, K. T. Kavanagh, and G. E. Sonenshein, “Green tea polyphenol epigallocatechin-3 gallate inhibits Her-2/neu signaling, proliferation, and transformed phenotype of breast cancer cells,” Cancer Research, vol. 62, no. 3, pp. 652–655, 2002. View at Google Scholar · View at Scopus
  93. F. Yang, H. S. Oz, S. Barve, W. J. S. De Villiers, C. J. McClain, and G. W. Varilek, “The green tea polyphenol (-)-epigallocatechin-3-gallate blocks nuclear factor-κB activation by inhibiting IκB kinase activity in the intestinal epithelial cell line IEC-6,” Molecular Pharmacology, vol. 60, no. 3, pp. 528–533, 2001. View at Google Scholar · View at Scopus
  94. I. A. Siddiqui, V. M. Adhami, F. Afaq, N. Ahmad, and H. Mukhtar, “Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells,” Journal of Cellular Biochemistry, vol. 91, no. 2, pp. 232–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Masuda, M. Suzui, J. T. E. Lim, and I. B. Weinstein, “Epigallocatechin-3-gallate inhibits activation of HER-2/neu and downstream signaling pathways in human head and neck and breast carcinoma cells,” Clinical Cancer Research, vol. 9, no. 9, pp. 3486–3491, 2003. View at Google Scholar · View at Scopus
  96. A. M. Roy, M. S. Baliga, and S. K. Katiyar, “Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expresssion of p53 and Bax and caspase-3 activation,” Molecular Cancer Therapeutics, vol. 4, no. 1, pp. 81–90, 2005. View at Google Scholar · View at Scopus
  97. M. S. Baliga, S. Meleth, and S. K. Katiyar, “Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems,” Clinical Cancer Research, vol. 11, no. 5, pp. 1918–1927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. K. R. Landis-Piwowar, C. Huo, D. Chen et al., “A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent,” Cancer Research, vol. 67, no. 9, pp. 4303–4310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. S. P. Ermakova, B. S. Kang, B. Y. Choi et al., “(-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78,” Cancer Research, vol. 66, no. 18, pp. 9260–9269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Li, Z. He, S. Ermakova et al., “Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 3, pp. 598–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. X. Zhang, J. Kim, R. Ruthazer et al., “The HBP1 transcriptional repressor participates in RAS-induced premature senescence,” Molecular and Cellular Biology, vol. 26, no. 22, pp. 8252–8266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. D. Zhou, Y. P. Kim, X. C. Li et al., “Hypoxia-Inducible factor-1 activation by (-)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts,” Journal of Natural Products, vol. 67, no. 12, pp. 2063–2069, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. E. P. Moiseeva, L. H. Fox, L. M. Howells, L. A. F. Temple, and M. M. Manson, “Indole-3-carbinol-induced death in cancer cells involves EGFR downregulation and is exacerbated in a 3D environment,” Apoptosis, vol. 11, no. 5, pp. 799–812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Evans, J. G. Elliott, P. Sharma, R. Berman, and N. Guthrie, “The effect of synthetic genistein on menopause symptom management in healthy postmenopausal women: a multi-center, randomized, placebo-controlled study,” Maturitas, vol. 68, no. 2, pp. 189–196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Ide, S. Tokiwa, K. Sakamaki et al., “Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen,” Prostate, vol. 70, no. 10, pp. 1127–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Rodríguez-Moranta and A. Castells, “Mechanisms of colon cancer prevention with and beyond COX-2 inhibition,” Current Topics in Medicinal Chemistry, vol. 5, no. 5, pp. 505–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. M. V. Swamy, C. R. Herzog, and C. V. Rao, “Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53,” Cancer Research, vol. 63, no. 17, pp. 5239–5242, 2003. View at Google Scholar · View at Scopus
  108. B. S. Reddy, C. X. Wang, H. Samaha et al., “Chemoprevention of colon carcinogenesis by dietary perillyl alcohol,” Cancer Research, vol. 57, no. 3, pp. 420–425, 1997. View at Google Scholar · View at Scopus
  109. P. L. Crowell, A. S. Ayoubi, and Y. D. Burke, “Antitumorigenic effects of limonene and perillyl alcohol against pancreatic and breast cancer,” Advances in Experimental Medicine and Biology, vol. 401, pp. 131–136, 1996. View at Google Scholar · View at Scopus
  110. T. Kawamori, T. Tanaka, Y. Hirose, M. Ohnishi, and H. Mori, “Inhibitory effects of d-limonene on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats,” Carcinogenesis, vol. 17, no. 2, pp. 369–372, 1996. View at Publisher · View at Google Scholar · View at Scopus
  111. G. M. Lowe, L. A. Booth, A. J. Young, and R. F. Bilton, “Lycopene and β-carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses,” Free Radical Research, vol. 30, no. 2, pp. 141–151, 1999. View at Google Scholar · View at Scopus
  112. W. B. Grant, “An ecologic study of dietary links to prostate cancer,” Alternative Medicine Review, vol. 4, no. 3, pp. 162–169, 1999. View at Google Scholar · View at Scopus
  113. D. Heber and Q. Y. Lu, “Overview of mechanisms of action of lycopene,” Experimental Biology and Medicine, vol. 227, no. 10, pp. 920–923, 2002. View at Google Scholar · View at Scopus
  114. V. V. Mossine, P. Chopra, and T. P. Mawhinney, “Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis,” Cancer Research, vol. 68, no. 11, pp. 4384–4391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Vetvicka, T. Volny, S. Saraswat-Ohri, A. Vashishta, Z. Vancikova, and J. Vetvickova, “Glucan and resveratrol complex–possible synergistic effects on immune system,” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czech Republic, vol. 151, no. 1, pp. 41–46, 2007. View at Google Scholar
  116. K. Jabbari and G. Bernardi, “Cytosine methylation and CpG, TpG (CpA) and TpA frequencies,” Gene, vol. 333, pp. 143–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. J. B. Berletch, C. Liu, W. K. Love, L. G. Andrews, S. K. Katiyar, and T. O. Tollefsbol, “Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG,” Journal of Cellular Biochemistry, vol. 103, no. 2, pp. 509–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Iliopoulos, P. Oikonomou, I. Messinis, and A. Tsezou, “Correlation of promoter hypermethylation in hTERT, DAPK and MGMT genes with cervical oncogenesis progression,” Oncology Reports, vol. 22, no. 1, pp. 199–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. D. Iliopoulos, M. Satra, A. Drakaki, G. A. Poultsides, and A. Tsezou, “Epigenetic regulation of hTERT promoter in hepatocellular carcinomas,” International Journal of Oncology, vol. 34, no. 2, pp. 391–399, 2009. View at Publisher · View at Google Scholar · View at Scopus