Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 204593, 7 pages
http://dx.doi.org/10.1155/2012/204593
Review Article

The Role of FoxC2 Transcription Factor in Tumor Angiogenesis

Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, 303E Chicago Avenue, Chicago, IL 60611, USA

Received 27 May 2011; Revised 17 August 2011; Accepted 29 August 2011

Academic Editor: Debabrata Mukhopadhyay

Copyright © 2012 Tsutomu Kume. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  2. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Ferrara and R. S. Kerbel, “Angiogenesis as a therapeutic target,” Nature, vol. 438, no. 7070, pp. 967–974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nature Medicine, vol. 9, no. 6, pp. 713–725, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. H. Kaestner, W. Knöchel, and D. E. Martínez, “Unified nomenclature for the winged helix/forkhead transcription factors,” Genes and Development, vol. 14, no. 2, pp. 142–146, 2000. View at Google Scholar · View at Scopus
  6. S. M. Shimeld, B. Degnan, and G. N. Luke, “Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters,” Genomics, vol. 95, no. 5, pp. 256–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Wotton and S. M. Shimeld, “Comparative genomics of vertebrate Fox cluster loci,” BMC Genomics, vol. 7, article 271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Carlsson and M. Mahlapuu, “Forkhead transcription factors: key players in development and metabolism,” Developmental Biology, vol. 250, no. 1, pp. 1–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Kaufmann and W. Knöchel, “Five years on the wings of fork head,” Mechanisms of Development, vol. 57, no. 1, pp. 3–20, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. S. S. Myatt and E. W. Lam, “The emerging roles of forkhead box (Fox) proteins in cancer,” Nature Reviews Cancer, vol. 7, no. 11, pp. 847–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Wang, S. Banerjee, D. Kong, Y. Li, and F. H. Sarkar, “Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells,” Cancer Research, vol. 67, no. 17, pp. 8293–8300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Zhang, N. Zhang, B. Dai et al., “FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells,” Cancer Research, vol. 68, no. 21, pp. 8733–8742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Y. Dong, C. Chen, X. Sun et al., “FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer,” Cancer Research, vol. 66, no. 14, pp. 6998–7006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Paik, R. Kollipara, G. Chu et al., “FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis,” Cell, vol. 128, no. 2, pp. 309–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Sano, J. P. LeBoeuf, S. V. Novitskiy et al., “The FoxC2 transcription factor regulates tumor angiogenesis,” Biochemical and Biophysical Research Communications, vol. 392, no. 2, pp. 201–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Iida, H. Koseki, H. Kakinuma et al., “Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis,” Development, vol. 124, no. 22, pp. 4627–4638, 1997. View at Google Scholar · View at Scopus
  17. T. Kume, H. Jiang, J. M. Topczewska, and B. L. Hogan, “The murine winged helix transcription factors, Foxc1 and FoxC2, are both required for cardiovascular development and somitogenesis,” Genes and Development, vol. 15, no. 18, pp. 2470–2482, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Seo, H. Fujita, A. Nakano, M. Kang, A. Duarte, and T. Kume, “The forkhead transcription factors, Foxc1 and FoxC2, are required for arterial specification and lymphatic sprouting during vascular development,” Developmental Biology, vol. 294, no. 2, pp. 458–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. E. Winnier, T. Kume, K. Deng et al., “Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles,” Developmental Biology, vol. 213, no. 2, pp. 418–431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Hayashi and T. Kume, “Foxc transcription factors directly regulate DII4 and hey2 expression by interacting with the VEGF-notch signaling pathways in endothelial cells,” PLoS ONE, vol. 3, no. 6, Article ID e2401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kume, “The cooperative roles of Foxc1 and FoxC2 in cardiovascular development,” Advances in Experimental Medicine and Biology, vol. 665, pp. 63–77, 2009. View at Google Scholar · View at Scopus
  22. K. N. Papanicolaou, Y. Izumiya, and K. Walsh, “Forkhead transcription factors and cardiovascular biology,” Circulation Research, vol. 102, no. 1, pp. 16–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Hayashi and T. Kume, “FoxC2 transcription factor as a regulator of angiogenesis via induction of integrin β3 expression,” Cell Adhesion and Migration, vol. 3, no. 1, pp. 24–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kume, “FoxC2 transcription factor: a newly described regulator of angiogenesis,” Trends in Cardiovascular Medicine, vol. 18, no. 6, pp. 224–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Hayashi and T. Kume, “Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration,” Biochemical and Biophysical Research Communications, vol. 367, no. 3, pp. 584–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Hayashi, H. Sano, S. Seo, and T. Kume, “The FoxC2 transcription factor regulates angiogenesis via induction of integrin β3 expression,” Journal of Biological Chemistry, vol. 283, no. 35, pp. 23791–23800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. de Val, N. C. Chi, S. M. Meadows et al., “Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors,” Cell, vol. 135, no. 6, pp. 1053–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Oettgen, “The role of ets factors in tumor angiogenesis,” Journal of Oncology, vol. 2010, Article ID 767384, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Buysschaert, T. Schmidt, C. Roncal, P. Carmeliet, and D. Lambrechts, “Genetics, epigenetics and pharmaco-(epi)genomics,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6B, pp. 2533–2551, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Potente, L. Ghaeni, D. Baldessari et al., “SIRT1 controls endothelial angiogenic functions during vascular growth,” Genes and Development, vol. 21, no. 20, pp. 2644–2658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Guarani, G. Deflorian, C. A. Franco et al., “Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase,” Nature, vol. 473, no. 7346, pp. 234–238, 2011. View at Publisher · View at Google Scholar
  32. S. L. Dagenais, R. L. Hartsough, R. P. Erickson, M. H. Witte, M. G. Butler, and T. W. Glover, “FoxC2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome,” Gene Expression Patterns, vol. 4, no. 6, pp. 611–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. V. Petrova, T. Karpanen, C. Norrmén et al., “Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis,” Nature Medicine, vol. 10, no. 9, pp. 974–981, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Fang, S. L. Dagenais, R. P. Erickson et al., “Mutations in FoxC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome,” American Journal of Human Genetics, vol. 67, no. 6, pp. 1382–1388, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Mäkinen, C. Norrmén, and T. V. Petrova, “Molecular mechanisms of lymphatic vascular development,” Cellular and Molecular Life Sciences, vol. 64, no. 15, pp. 1915–1929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. B. M. Kriederman, T. L. Myloyde, M. H. Witte et al., “FoxC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome,” Human Molecular Genetics, vol. 12, no. 10, pp. 1179–1185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Itoh, M. Tanioka, H. Yoshida, T. Yoshioka, H. Nishimoto, and S. Itohara, “Reduced angiogenesis and tumor progression in gelatinase A-deficient mice,” Cancer Research, vol. 58, no. 5, pp. 1048–1051, 1998. View at Google Scholar · View at Scopus
  38. K. Taniwaki, H. Fukamachi, K. Komori et al., “Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice,” Cancer Research, vol. 67, no. 9, pp. 4311–4319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Nishida, K. Mimori, T. Yokobori et al., “FoxC2 is a novel prognostic factor in human esophageal squamous cell carcinoma,” Annals of Surgical Oncology, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. A. Mani, J. Yang, M. Brooks et al., “Mesenchyme Forkhead 1 (FoxC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 10069–10074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Lee, T. T. Chen, C. L. Barber et al., “Autocrine VEGF signaling is required for vascular homeostasis,” Cell, vol. 130, no. 4, pp. 691–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Ferrara, “Pathways mediating VEGF-independent tumor angiogenesis,” Cytokine and Growth Factor Reviews, vol. 21, no. 1, pp. 21–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Fukumura, R. Xavier, T. Sugiura et al., “Tumor induction of VEGF promoter activity in stromal cells,” Cell, vol. 94, no. 6, pp. 715–725, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Li, D. Yan, W. Liu et al., “FoxC2 overexpression enhances benefit of endothelial progenitor cells for inhibiting neointimal formation by promoting CXCR4-dependent homing,” Journal of Vascular Surgery, vol. 53, no. 6, pp. 1668–1678, 2011. View at Publisher · View at Google Scholar
  47. C. Hader, A. Marlier, and L. Cantley, “Mesenchymal-epithelial transition in epithelial response to injury: the role of FoxC2,” Oncogene, vol. 29, no. 7, pp. 1031–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Burger and T. J. Kipps, “CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment,” Blood, vol. 107, no. 5, pp. 1761–1767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Lin and Z. Yun, “Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics,” Cancer Biology and Therapy, vol. 9, no. 12, pp. 949–956, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Sugimoto, T. M. Mundel, M. W. Kieran, and R. Kalluri, “Identification of fibroblast heterogeneity in the tumor microenvironment,” Cancer Biology and Therapy, vol. 5, no. 12, pp. 1640–1646, 2006. View at Google Scholar · View at Scopus
  51. E. M. Zeisberg, S. Potenta, L. Xie, M. Zeisberg, and R. Kalluri, “Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts,” Cancer Research, vol. 67, no. 21, pp. 10123–10128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Kalluri and M. Zeisberg, “Fibroblasts in cancer,” Nature Reviews Cancer, vol. 6, no. 5, pp. 392–401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Xouri and S. Christian, “Origin and function of tumor stroma fibroblasts,” Seminars in Cell and Developmental Biology, vol. 21, no. 1, pp. 40–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Andrae, R. Gallini, and C. Betsholtz, “Role of platelet-derived growth factors in physiology and medicine,” Genes and Development, vol. 22, no. 10, pp. 1276–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Sennino, B. L. Falcón, D. McCauley et al., “Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102,” Cancer Research, vol. 67, no. 15, pp. 7358–7367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Erber, A. Thurnher, A. D. Katsen et al., “Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms,” The FASEB Journal, vol. 18, no. 2, pp. 338–340, 2004. View at Google Scholar · View at Scopus
  57. O. Potapova, A. D. Laird, M. A. Nannini et al., “Contribution of individual targets to the antitumor efficacy of the multitargeted receptor tyrosine kinase inhibitor SU11248,” Molecular Cancer Therapeutics, vol. 5, no. 5, pp. 1280–1289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Guo, B. Hu, W. Gu et al., “Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment,” American Journal of Pathology, vol. 162, no. 4, pp. 1083–1093, 2003. View at Google Scholar · View at Scopus
  59. J. Yang and R. A. Weinberg, “Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis,” Developmental Cell, vol. 14, no. 6, pp. 818–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. E. Lindley and K. J. Briegel, “Molecular characterization of TGFbeta-induced epithelial-mesenchymal transition in normal finite lifespan human mammary epithelial cells,” Biochemical and Biophysical Research Communications, vol. 399, no. 4, pp. 659–664, 2010. View at Google Scholar
  61. F. Mortazavi, J. An, S. Dubinett, and M. Rettig, “p120-Catenin is transcriptionally downregulated by FoxC2 in non-small cell lung cancer cells,” Molecular Cancer Research, vol. 8, no. 5, pp. 762–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J. P. Thiery, H. Acloque, R. Y. J. Huang, and M. A. Nieto, “Epithelial-mesenchymal transitions in development and disease,” Cell, vol. 139, no. 5, pp. 871–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. A. Garraway and W. R. Sellers, “Lineage dependency and lineage-survival oncogenes in human cancer,” Nature Reviews Cancer, vol. 6, no. 8, pp. 593–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. P. B. Gupta, C. Kuperwasser, J. P. Brunet et al., “The melanocyte differentiation program predisposes to metastasis after neoplastic transformation,” Nature Genetics, vol. 37, no. 10, pp. 1047–1054, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. R. N. Johnston, S. B. Pai, and R. B. Pai, “The origin of the cancer cell: oncogeny reverses phylogeny,” Biochemistry and Cell Biology, vol. 70, no. 10-11, pp. 831–834, 1992. View at Google Scholar · View at Scopus
  66. Z. Wang, A. Ahmad, Y. Li, S. Banerjee, D. Kong, and F. H. Sarkar, “Forkhead box M1 transcription factor: a novel target for cancer therapy,” Cancer Treatment Reviews, vol. 36, no. 2, pp. 151–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. U. G. Bhat, M. Halasi, and A. L. Gartel, “FoxM1 is a general target for proteasome inhibitors,” PLoS ONE, vol. 4, no. 8, Article ID e6593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. U. G. Bhat, M. Halasi, and A. L. Gartel, “Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells,” PLoS ONE, vol. 4, no. 5, Article ID e5592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Li, X. Hong, M. Hussain, S. H. Sarkar, R. Li, and F. H. Sarkar, “Gene expression profiling revealed novel molecular targets of docetaxel and estramustine combination treatment in prostate cancer cells,” Molecular Cancer Therapeutics, vol. 4, no. 3, pp. 389–398, 2005. View at Google Scholar · View at Scopus
  70. Y. Li, M. Hussain, S. H. Sarkar, J. Eliason, R. Li, and F. H. Sarkar, “Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells,” BMC Cancer, vol. 5, article 7, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. S. K. Radhakrishnan, U. G. Bhat, D. E. Hughes, I. C. Wang, R. H. Costa, and A. L. Gartel, “Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1,” Cancer Research, vol. 66, no. 19, pp. 9731–9735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. G. A. Gusarova, I. C. Wang, M. L. Major et al., “A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 99–111, 2007. View at Publisher · View at Google Scholar · View at Scopus