Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 345164, 7 pages
http://dx.doi.org/10.1155/2012/345164
Review Article

Regulatory T Cells in Human Ovarian Cancer

1Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
2Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
3Graduate Programs in Immunology and Cancer Biology, University of Michigan, Ann Arbor, MI 48109, USA
4University of Michigan School of Medicine, C560B MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0669, USA

Received 15 September 2011; Accepted 26 November 2011

Academic Editor: Kentaro Nakayama

Copyright © 2012 Dong-Jun Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. L. Zhang, J. R. Conejo-Garcia, D. Katsaros et al., “Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer,” New England Journal of Medicine, vol. 348, no. 3, pp. 203–213, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. E. Sato, S. H. Olson, J. Ahn et al., “Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18538–18543, 2005. View at Publisher · View at Google Scholar · View at PubMed
  4. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. A. Curotto de Lafaille and J. J. Lafaille, “Natural and adaptive Foxp3+ regulatory T cells: more of the same or a division of labor?” Immunity, vol. 30, no. 5, pp. 626–635, 2009. View at Publisher · View at Google Scholar · View at PubMed
  6. W. Zou, “Regulatory T cells, tumour immunity and immunotherapy,” Nature Reviews Immunology, vol. 6, no. 4, pp. 295–307, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. K. Gershon and K. Kondo, “Cell interactions in the induction of tolerance: the role of thymic lymphocytes,” Immunology, vol. 18, no. 5, pp. 723–737, 1970. View at Google Scholar · View at Scopus
  8. R. K. Gershon and K. Kondo, “Infectious immunological tolerance,” Immunology, vol. 21, no. 6, pp. 903–914, 1971. View at Google Scholar · View at Scopus
  9. S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL- 2 receptor α-chains (CD25): breakdown of a single mechanism of self- tolerance causes various autoimmune diseases,” Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995. View at Google Scholar · View at Scopus
  10. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. M. Shevach, “CD4+CD25+ suppressor T cells: more questions than answers,” Nature Reviews Immunology, vol. 2, no. 6, pp. 389–400, 2002. View at Google Scholar
  12. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at PubMed
  13. L.A. Stephens, C. Mottet, and D. Mason, “Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro,” Eur J Immunol, vol. 31, no. 4, pp. 1247–1254, 2001. View at Google Scholar
  14. H. Groux, A. O'Garra, M. Bigler et al., “A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis,” Nature, vol. 389, no. 6652, pp. 737–742, 1997. View at Publisher · View at Google Scholar · View at PubMed
  15. T. R. F. Smith and V. Kumar, “Revival of CD8+ Treg-mediated suppression,” Trends in Immunology, vol. 29, no. 7, pp. 337–342, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. H. Jonuleit and E. Schmitt, “The regulator T cell family: distinct subsets and their interrelations,” Journal of Immunology, vol. 171, no. 12, pp. 6323–6327, 2003. View at Google Scholar · View at Scopus
  17. E. Jones, M. Dahm-Vicker, A. K. Simon et al., “Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice,” Cancer Immunity, vol. 2, p. 1, 2002. View at Google Scholar · View at Scopus
  18. S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama, “Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody,” Cancer Research, vol. 59, no. 13, pp. 3128–3133, 1999. View at Google Scholar · View at Scopus
  19. D. Golgher, E. Jones, F. Powrie, T. Elliott, and A. Gallimore, “Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens,” European Journal of Immunology, vol. 32, no. 11, pp. 3267–3275, 2002. View at Publisher · View at Google Scholar
  20. F. Ichihara, K. Kono, A. Takahashi, H. Kawaida, H. Sugai, and H. Fujii, “Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers,” Clinical Cancer Research, vol. 9, no. 12, pp. 4404–4408, 2003. View at Google Scholar · View at Scopus
  21. E. Y. Woo, C. S. Chu, T. J. Goletz et al., “Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer,” Cancer Research, vol. 61, no. 12, pp. 4766–4772, 2001. View at Google Scholar
  22. U. K. Liyanage, T. T. Moore, H. G. Joo et al., “Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,” Journal of Immunology, vol. 169, no. 5, pp. 2756–2761, 2002. View at Google Scholar · View at Scopus
  23. L. Ormandy, T. Hillemann, H. Wedemeyer, M. P. Manns, T. F. Greten, and F. Korangy, “Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma,” Cancer Research, vol. 65, no. 6, pp. 2457–2464, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. K. Schott, R. Pries, and B. Wollenberg, “Permanent up-regulation of regulatory T-lymphocytes in patients with head and neck cancer,” International Journal of Molecular Medicine, vol. 26, no. 1, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Álvaro, M. Lejeune, M. T. Salvadó et al., “Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells,” Clinical Cancer Research, vol. 11, no. 4, pp. 1467–1473, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. Steitz, J. Brück, J. Lenz, J. Knop, and T. Tüting, “Depletion of CD25+CD4+ T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon α-induced, CD8+ T-cell-dependent immune defense of B16 melanoma,” Cancer Research, vol. 61, no. 24, pp. 8643–8646, 2001. View at Google Scholar
  27. A. Iellem, M. Mariani, R. Lang et al., “Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 847–853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Wu, H. Fang, and S. T. Hwang, “Cutting edge: CCR4 mediates antigen-primed T cell binding to activated dendritic cells,” Journal of Immunology, vol. 167, no. 9, pp. 4791–4795, 2001. View at Google Scholar · View at Scopus
  29. H. L. Tang and J. G. Cyster, “Chemokine up-regulation and activated T cell attraction by maturing dendritic cells,” Science, vol. 284, no. 5415, pp. 819–822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Haas, L. Schopp, B. Storch-Hagenlocher et al., “Specific recruitment of regulatory T cells into the CSF in lymphomatous and carcinomatous meningitis,” Blood, vol. 111, no. 2, pp. 761–766, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. T. Ishida, T. Ishii, A. Inagaki et al., “Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege,” Cancer Research, vol. 66, no. 11, pp. 5716–5722, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. Ménétrier-Caux, M. Gobert, and C. Caux, “Differences in tumor regulatory T-cell localization and activation status impact patient outcome,” Cancer Research, vol. 69, no. 20, pp. 7895–7898, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Y. Mizukami, K. Kono, Y. Kawaguchi et al., “CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer,” International Journal of Cancer, vol. 122, no. 10, pp. 2286–2293, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. M. C. B. Tan, P. S. Goedegebuure, B. A. Belt et al., “Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer,” Journal of Immunology, vol. 182, no. 3, pp. 1746–1755, 2009. View at Google Scholar · View at Scopus
  35. M. Kleinewietfeld, F. Puentes, G. Borsellino, L. Battistini, O. Rötzschke, and K. Falk, “CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset,” Blood, vol. 105, no. 7, pp. 2877–2886, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. Papiernik, M. L. De Moraes, C. Pontoux, F. Vasseur, and C. Pénit, “Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency,” International Immunology, vol. 10, no. 4, pp. 371–378, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. W. J. Penhale, W. J. Irvine, J. R. Inglis, and A. Farmer, “Thyroiditis in T cell depleted rats: suppression of the autoallergic response by reconstitution with normal lymphoid cells,” Clinical and Experimental Immunology, vol. 25, no. 1, pp. 6–16, 1976. View at Google Scholar · View at Scopus
  38. S. Sakaguchi, M. Miyara, C. M. Costantino, and D. A. Hafler, “FOXP3+ regulatory T cells in the human immune system,” Nature Reviews Immunology, vol. 10, no. 7, pp. 490–500, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. S. Jordan, A. Boesteanu, A. J. Reed et al., “Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide,” Nature Immunology, vol. 2, no. 4, pp. 301–306, 2001. View at Publisher · View at Google Scholar · View at PubMed
  40. W. Zou, “Immunosuppressive networks in the tumour environment and their therapeutic relevance,” Nature Reviews Cancer, vol. 5, no. 4, pp. 263–274, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. H. Jonuleit, E. Schmitt, G. Schuler, J. Knop, and A. H. Enk, “Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells,” Journal of Experimental Medicine, vol. 192, no. 9, pp. 1213–1222, 2000. View at Publisher · View at Google Scholar
  42. M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, “Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells,” Journal of Experimental Medicine, vol. 193, no. 2, pp. 233–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Zoul, V. Machelon, A. Coulomb-L'Hermin et al., “Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells,” Nature Medicine, vol. 7, no. 12, pp. 1339–1346, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. S. Wei, I. Kryczek, L. Zou et al., “Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma,” Cancer Research, vol. 65, no. 12, pp. 5020–5026, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. F. Ghiringhelli, P. E. Puig, S. Roux et al., “Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 919–929, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. W. Chen, W. Jin, N. Hardegen et al., “Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1875–1886, 2003. View at Publisher · View at Google Scholar · View at PubMed
  47. J. Shimizu, S. Yamazaki, and S. Sakaguchi, “Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity,” Journal of Immunology, vol. 163, no. 10, pp. 5211–5218, 1999. View at Google Scholar
  48. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. F. Vincenti, R. Kirkman, S. Light et al., “Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation,” New England Journal of Medicine, vol. 338, no. 3, pp. 161–165, 1998. View at Publisher · View at Google Scholar · View at PubMed
  50. B. Nashan, R. Moore, P. Amlot, A.-G. Schmidt, K. Abeywickrama, and J.-P. Soulillou, “Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients,” The Lancet, vol. 350, no. 9086, pp. 1193–1198, 1997. View at Google Scholar
  51. A. J. Rech and R. H. Vonderheide, “Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells,” Annals of the New York Academy of Sciences, vol. 1174, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. T. Takahashi, T. Tagami, S. Yamazaki et al., “Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4,” Journal of Experimental Medicine, vol. 192, no. 2, pp. 303–310, 2000. View at Publisher · View at Google Scholar
  53. S. Read, V. Malmström, and F. Powrie, “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” Journal of Experimental Medicine, vol. 192, no. 2, pp. 295–302, 2000. View at Publisher · View at Google Scholar
  54. D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of antitumor immunity by CTLA-4 blockade,” Science, vol. 271, no. 5256, pp. 1734–1736, 1996. View at Google Scholar · View at Scopus
  55. F. S. Hodi, M. Butler, D. A. Oble et al., “Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 3005–3010, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. G. Q. Phan, J. C. Yang, R. M. Sherry et al., “Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8372–8377, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. J. Shimizu, S. Yamazaki, T. Takahashi, Y. Ishida, and S. Sakaguchi, “Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance,” Nature Immunology, vol. 3, no. 2, pp. 135–142, 2002. View at Publisher · View at Google Scholar · View at PubMed
  58. K. Ko, S. Yamazaki, K. Nakamura et al., “Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 885–891, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. M. J. Turk, J. A. Guevara-Patiño, G. A. Rizzuto, M. E. Engelhorn, and A. N. Houghton, “Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells,” Journal of Experimental Medicine, vol. 200, no. 6, pp. 771–782, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. Valzasina, C. Guiducci, H. Dislich, N. Killeen, A. D. Weinberg, and M. P. Colombo, “Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR,” Blood, vol. 105, no. 7, pp. 2845–2851, 2005. View at Publisher · View at Google Scholar · View at PubMed
  61. I. Takeda, S. Ine, N. Killeen et al., “Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells,” Journal of Immunology, vol. 172, no. 6, pp. 3580–3589, 2004. View at Google Scholar · View at Scopus
  62. M. E. C. Lutsiak, R. T. Semnani, R. De Pascalis, S. V. S. Kashmiri, J. Schlom, and H. Sabzevari, “Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide,” Blood, vol. 105, no. 7, pp. 2862–2868, 2005. View at Publisher · View at Google Scholar · View at PubMed
  63. M. J. Turk, J. A. Guevara-Patiño, G. A. Rizzuto, M. E. Engelhorn, and A. N. Houghton, “Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells,” Journal of Experimental Medicine, vol. 200, no. 6, pp. 771–782, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. Kawai, H. Kitade, C. Mathieu, M. Waer, and J. Pirenne, “Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo,” Transplantation, vol. 79, no. 9, pp. 1073–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Shibutani, F. Inoue, O. Aramaki et al., “Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen,” Transplantation, vol. 79, no. 8, pp. 904–913, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. A. W. Mailloux and M. R. I. Young, “Regulatory T-cell trafficking: from thymic development to tumor-induced immune suppression,” Critical Reviews in Immunology, vol. 30, no. 5, pp. 435–447, 2010. View at Google Scholar · View at Scopus
  67. L. Zou, B. Barnett, H. Safah et al., “Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals,” Cancer Research, vol. 64, no. 22, pp. 8451–8455, 2004. View at Publisher · View at Google Scholar · View at PubMed
  68. E. Righi, S. Kashiwagi, J. Yuan et al., “CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer,” Cancer Research, vol. 71, no. 16, pp. 5522–5534, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. J. M. Bartlett, S. P. Langdon, W. N. Scott et al., “Transforming growth factor-β isoform expression in human ovarian tumours,” European Journal of Cancer, vol. 33, no. 14, pp. 2397–2403, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. B. B. Cazac and J. Roes, “TGF-β receptor controls B cell responsiveness and induction of IgA in vivo,” Immunity, vol. 13, no. 4, pp. 443–451, 2000. View at Google Scholar · View at Scopus
  71. K. H. Schlingensiepen, B. Fischer-Blass, S. Schmaus, and S. Ludwig, “Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors,” Recent Results in Cancer Research, vol. 177, pp. 137–150, 2008. View at Google Scholar · View at Scopus
  72. D. Melisi, S. Ishiyama, G. M. Sclabas et al., “LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 829–840, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. Wei, A. B. Shreiner, N. Takeshita, L. Chen, W. Zou, and A. E. Chang, “Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor β,” Cancer Research, vol. 68, no. 13, pp. 5432–5438, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. W. Zou and L. Chen, “Inhibitory B7-family molecules in the tumour microenvironment,” Nature Reviews Immunology, vol. 8, no. 6, pp. 467–477, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. T. J. Curiel, S. Wei, H. Dong et al., “Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity,” Nature Medicine, vol. 9, no. 5, pp. 562–567, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. Hamanishi, M. Mandai, M. Iwasaki et al., “Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3360–3365, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. W. Ke, I. Kryczek, L. Chen, W. Zou, and T. H. Welling, “Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions,” Cancer Research, vol. 69, no. 20, pp. 8067–8075, 2009. View at Publisher · View at Google Scholar · View at PubMed
  78. W. Wang, R. Lau, D. Yu, W. Zhu, A. Korman, and J. Weber, “PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+CD25Hi regulatory T cells,” International Immunology, vol. 21, no. 9, pp. 1065–1077, 2009. View at Publisher · View at Google Scholar · View at PubMed
  79. L. M. Francisco, V. H. Salinas, K. E. Brown et al., “PD-L1 regulates the development, maintenance, and function of induced regulatory T cells,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 3015–3029, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. I. Kryczek, S. Wei, G. Zhu et al., “Relationship between B7-H4, regulatory T cells, and patient outcome in human ovarian carcinoma,” Cancer Research, vol. 67, no. 18, pp. 8900–8905, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. I. Kryczek, L. Zou, P. Rodriguez et al., “B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma,” Journal of Experimental Medicine, vol. 203, no. 4, pp. 871–881, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus