Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 507286, 9 pages
http://dx.doi.org/10.1155/2012/507286
Review Article

Biomarkers of Cervical Dysplasia and Carcinoma

1Department of Pathology, Hospital Level 2, Room 766, Stony Brook University Medical Center, Stony Brook, NY 11794-7025, USA
2Department of Pathology, Basic Science Tower, Level 9, Stony Brook University Medical Center, Stony Brook, NY 11794-8691, USA

Received 2 August 2011; Accepted 8 September 2011

Academic Editor: Adhemar Longatto-Filho

Copyright © 2012 Sonya J. Hwang and Kenneth R. Shroyer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Comprehensive Cervical Cancer Control: A Guide to Essential Practice, WHO, Geneva, Switzerland, 2006.
  2. “Stat bite: worldwide cervical and uterine cancer incidence and mortality, 2002,” Journal of the National Cancer Institute, vol. 98, no. 15, p. 1031, 2006.
  3. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Gustafsson, J. Pontén, M. Zack, and H. O. Adami, “International incidence rates of invasive cervical cancer after introduction of cytological screening,” Cancer Causes and Control, vol. 8, no. 5, pp. 755–763, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Schiffman and D. Solomon, “Findings to date from the ASCUS-LSIL Triage Study (ALTS),” Archives of Pathology and Laboratory Medicine, vol. 127, no. 8, pp. 946–949, 2003. View at Google Scholar · View at Scopus
  6. M. H. Schiffman, H. M. Bauer, R. N. Hoover et al., “Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia,” Journal of the National Cancer Institute, vol. 85, no. 12, pp. 958–964, 1993. View at Google Scholar · View at Scopus
  7. J. M. Walboomers, M. V. Jacobs, M. M. Manos et al., “Human papillomavirus is a necessary cause of invasive cervical cancer worldwide,” Journal of Pathology, vol. 189, no. 1, pp. 12–19, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. J. K. Wolf and P. T. Ramirez, “The molecular biology of cervical cancer,” Cancer Investigation, vol. 19, no. 6, pp. 621–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zur Hausen, “Papillomaviruses in human cancers,” Proceedings of the Association of American Physicians, vol. 111, no. 6, pp. 581–587, 1999. View at Google Scholar · View at Scopus
  10. E. F. Dunne, E. R. Unger, M. Sternberg et al., “Prevalence of HPV infection among females in the United States,” Journal of the American Medical Association, vol. 297, no. 8, pp. 813–819, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet, vol. 370, no. 9590, pp. 890–907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Schiffman, “Integration of human papillomavirus vaccination, cytology, and human papillomavirus testing,” Cancer, vol. 111, no. 3, pp. 145–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. N. F. Schlecht, S. Kulaga, J. Robitaille et al., “Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia,” Journal of the American Medical Association, vol. 286, no. 24, pp. 3106–3114, 2001. View at Google Scholar · View at Scopus
  14. M. H. Stoler and M. Schiffman, “Interobserver reproducibility of cervical cytologic and histologic interpretations: realistic estimates from the ASCUS-LSIL Triage Study,” Journal of the American Medical Association, vol. 285, no. 11, pp. 1500–1505, 2001. View at Google Scholar · View at Scopus
  15. J. Doorbar, “Papillomavirus life cycle organization and biomarker selection,” Disease Markers, vol. 23, no. 4, pp. 297–313, 2007. View at Google Scholar · View at Scopus
  16. M. H. Stoler, “Human papillomavirus biology and cervical neoplasia: implications for diagnostic criteria and testing,” Archives of Pathology and Laboratory Medicine, vol. 127, no. 8, pp. 935–939, 2003. View at Google Scholar · View at Scopus
  17. D. Dehn, K. C. Torkko, and K. R. Shroyer, “Human papillomavirus testing and molecular markers of cervical dysplasia and carcinoma,” Cancer, vol. 111, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. W. J. Bulkmans, L. Rozendaal, P. J. Snijders et al., “POBASCAM, a population-based randomized controlled trial for implementation of high-risk HPV testing in cervical screening: design, methods and baseline data of 4402 women,” International Journal of Cancer, vol. 110, no. 1, pp. 94–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. H. Mayrand, E. Duarte-Franco, I. Rodrigues et al., “Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer,” New England Journal of Medicine, vol. 357, no. 16, pp. 1579–1588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Naucler, W. Ryd, S. Törnberg et al., “Human papillomavirus and Papanicolaou tests to screen for cervical cancer,” New England Journal of Medicine, vol. 357, no. 16, pp. 1589–1597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Davies, J. Kornegay, and T. Iftner, “Current methods of testing for human papillomavirus,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 15, no. 5, pp. 677–700, 2001. View at Publisher · View at Google Scholar
  22. T. C. Wright and M. Schiffman, “Adding a test for human papillomavirus DNA to cervical-cancer screening,” New England Journal of Medicine, vol. 348, no. 6, pp. 489–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Khan, P. E. Castle, A. T. Lorincz et al., “The elevated 10-Year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice,” Journal of the National Cancer Institute, vol. 97, no. 14, pp. 1072–1079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. L. R. Johnson, C. R. Starkey, J. Palmer et al., “A comparison of two methods to determine the presence of high-risk HPV cervical infections,” American Journal of Clinical Pathology, vol. 130, no. 3, pp. 401–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. H. Einstein, M. G. Martens, F. A. Garcia et al., “Clinical validation of the Cervista HPV HR and 16/18 genotyping tests for use in women with ASC-US cytology,” Gynecologic Oncology, vol. 118, no. 2, pp. 116–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. A. Bartholomew, R. D. Luff, N. B. Quigley, M. Curtis, and M. C. Olson, “Analytical performance of Cervista® HPV 16/18 genotyping test for cervical cytology samples,” Journal of Clinical Virology, vol. 51, no. 1, pp. 38–43, 2011. View at Publisher · View at Google Scholar
  27. C. L. Peyton, P. E. Gravitt, W. C. Hunt et al., “Determinants of genital human papillomavirus detection in a US population,” Journal of Infectious Diseases, vol. 183, no. 11, pp. 1554–1564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. P. J. Snijders, A. J. van den Brule, and C. J. Meijer, “The clinical relevance of human papillomavirus testing: relationship between analytical and clinical sensitivity,” Journal of Pathology, vol. 201, no. 1, pp. 1–6, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. P. E. Gravitt, C. Peyton, C. Wheeler, R. Apple, R. Higuchi, and K. V. Shah, “Reproducibility of HPV 16 and HPV 18 viral load quantitation using TaqMan real-time PCR assays,” Journal of Virological Methods, vol. 112, no. 1-2, pp. 23–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Carcopino, M. Henry, D. Benmoura et al., “Determination of HPV type 16 and 18 viral load in cervical smears of women referred to colposcopy,” Journal of Medical Virology, vol. 78, no. 8, pp. 1131–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. B. Hudson, M. A. Bedell, D. J. McCance, and L. A. Laimins, “Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18,” Journal of Virology, vol. 64, no. 2, pp. 519–526, 1990. View at Google Scholar · View at Scopus
  32. T. Molden, I. Kraus, F. Karlsen, H. Skomedal, and B. Hagmar, “Human papillomavirus E6/E7 mRNA expression in women younger than 30 years of age,” Gynecologic Oncology, vol. 100, no. 1, pp. 95–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Molden, J. F. Nygård, I. Kraus et al., “Predicting CIN2+ when detecting HPV mRNA and DNA by PreTect HPV-Proofer and consensus PCR: a 2-year follow-up of women with ASCUS or LSIL Pap smear,” International Journal of Cancer, vol. 114, no. 6, pp. 973–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Birner, B. Bachtiary, B. Dreier et al., “Signal-amplified colorimetric in situ hybridization for assessment of human papillomavirus infection in cervical lesions,” Modern Pathology, vol. 14, no. 7, pp. 702–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Melsheimer, S. Kaul, S. Dobeck, and G. Bastert, “Immunocytochemical detection of HPV high-risk type L1 capsid proteins in LSIL and HSIL as compared with detection of HPV L1 DNA,” Acta Cytologica, vol. 47, no. 2, pp. 124–128, 2003. View at Google Scholar · View at Scopus
  36. H. Griesser, H. Sander, R. Hilfrich, B. Moser, and U. Schenck, “Correlation of immunochemical detection of HPV L1 capsid protein in pap smears with regression of high-risk HPV positive mild/moderate dysplasia,” Analytical and Quantitative Cytology and Histology, vol. 26, no. 5, pp. 241–245, 2004. View at Google Scholar
  37. R. Hilfrich and J. Hariri, “Prognostic relevance of human papillomavirus L1 capsid protein detection within mild and moderate dysplastic lesions of the cervix uteri in combination with p16 biomarker,” Analytical and Quantitative Cytology and Histology, vol. 30, no. 2, pp. 78–82, 2008. View at Google Scholar
  38. M. T. Galgano, P. E. Castle, K. A. Atkins, W. K. Brix, S. R. Nassau, and M. H. Stoler, “Using Biomarkers as objective standards in the diagnosis of cervical biopsies,” American Journal of Surgical Pathology, vol. 34, no. 8, pp. 1077–1087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. H. S. Zhang, A. A. Postigo, and D. C. Dean, “Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFβ, and contact inhibition,” Cell, vol. 97, no. 1, pp. 53–61, 1999. View at Google Scholar · View at Scopus
  40. J. T. Keating, A. Cviko, S. Riethdorf et al., “Ki-67, cyclin E, and p16INK4 are complimentary surrogate biomarkers for human papilloma virus-related cervical neoplasia,” American Journal of Surgical Pathology, vol. 25, no. 7, pp. 884–891, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Klaes, T. Friedrich, D. Spitkovsky et al., “Overexpression of p16ink4a as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri,” International Journal of Cancer, vol. 92, no. 2, pp. 276–284, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Cuschieri and N. Wentzensen, “Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 10, pp. 2536–2545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Beauséjour, A. Krtolica, F. Galimi et al., “Reversal of human cellular senescence: roles of the p53 and p16 pathways,” EMBO Journal, vol. 22, no. 16, pp. 4212–4222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Tringler, C. J. Gup, M. Singh et al., “Evaluation of p16INK4a and pRb expression in cervical squamous and glandular neoplasia,” Human Pathology, vol. 35, no. 6, pp. 689–696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. L. C. Horn, A. Reichert, A. Oster et al., “Immunostaining for p16INK4a used as a conjunctive tool improves interobserver agreement of the histologic diagnosis of cervical intraepithelial neoplasia,” American Journal of Surgical Pathology, vol. 32, no. 4, pp. 502–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Klaes, A. Benner, T. Friedrich et al., “p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia,” American Journal of Surgical Pathology, vol. 26, no. 11, pp. 1389–1399, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. Zhang, L. Kuhn, L. A. Denny, M. De Souza, S. Taylor, and T. C. Wright, “Impact of utilizing p16INK4A immunohistochemistry on estimated performance of three cervical cancer screening tests,” International Journal of Cancer, vol. 120, no. 2, pp. 351–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Bergeron, J. Ordi, D. Schmidt, M. J. Trunk, T. Keller, and R. Ridder, “Conjunctive p16INK4a testing significantly increases accuracy in diagnosing high-grade cervical intraepithelial neoplasia,” American Journal of Clinical Pathology, vol. 133, no. 3, pp. 395–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Murphy, M. Ring, A. G. Killalea et al., “p16INK4A as a marker for cervical dyskaryosis: CIN and cGIN in cervical biopsies and ThinPrep smears,” Journal of Clinical Pathology, vol. 56, no. 1, pp. 56–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Samarawardana, D. L. Dehn, M. Singh et al., “p16INK4a is superior to high-risk human papillomavirus testing in cervical cytology for the prediction of underlying high-grade dysplasia,” Cancer Cytopathology, vol. 118, no. 3, pp. 146–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Denton, C. Bergeron, P. Klement, M. J. Trunk, T. Keller, and R. Ridder, “The sensitivity and specificity of p16INK4a cytology vs HPV testing for detecting high-grade cervical disease in the triage of ASC-US and LSIL Pap cytology results,” American Journal of Clinical Pathology, vol. 134, no. 1, pp. 12–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. J. Kruse, J. P. Baak, P. C. de Bruin et al., “Ki-67 immunoquantitation in cervical intraepithelial neoplasia (CIN): a sensitive marker for grading,” Journal of Pathology, vol. 193, no. 1, pp. 48–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. A. J. Kruse, J. P. Baak, P. C. de Bruin, F. R. van de Goot, and N. Kurten, “Relationship between the presence of oncogenic HPV DNA assessed by polymerase chain reaction and Ki-67 immunoquantitative features in cervical intraepithelial neoplasia,” Journal of Pathology, vol. 195, no. 5, pp. 557–562, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Singh, D. Mockler, A. Akalin et al., “Dual localization of p16INK4a and Ki-67 detects high grade cervical intraepithelial neoplasia and cancer,” Cancer Cytopathology. In press.
  55. K. U. Petry, D. Schmidt, S. Scherbring et al., “Triaging Pap cytology negative, HPV positive cervical cancer screening results with p16/Ki-67 Dual-stained cytology,” Gynecologic Oncology, vol. 121, no. 3, pp. 505–509, 2011. View at Publisher · View at Google Scholar
  56. D. Schmidt, C. Bergeron, K. J. Denton, and R. Ridder, “p16/ki-67 dual-stain cytology in the triage of ASCUS and LSIL papanicolaou cytology: results from the European equivocal or mildly abnormal Papanicolaou cytology study,” Cancer Cytopathology, vol. 119, no. 3, pp. 158–166, 2011. View at Publisher · View at Google Scholar
  57. H. Liu, J. Shi, M. Wilkerson et al., “Immunohistochemical detection of p16INK4a in liquid-based cytology specimens on cell block sections,” Cancer, vol. 111, no. 2, pp. 74–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Eleutério Jr., P. C. Giraldo, A. K. Gonçalves et al., “Prognostic markers of high-grade squamous intraepithelial lesions: the role of p16INK4a and high-risk human papillomavirus,” Acta Obstetricia et Gynecologica Scandinavica, vol. 86, no. 1, pp. 94–98, 2007. View at Publisher · View at Google Scholar
  59. J. L. Meyer, D. W. Hanlon, B. T. Andersen, O. F. Rasmussen, and K. Bisgaard, “Evaluation of p16INK4a expression in ThinPrep cervical specimens with the CINtec p16INK4a assay: correlation with biopsy follow-up results,” Cancer, vol. 111, no. 2, pp. 83–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Wentzensen, C. Bergeron, F. Cas, S. Vinokurova, and M. von Knebel Doeberitz, “Triage of women with ASCUS and LSIL cytology: use of qualitative assessment of p16INK4a positive cells to identify patients with high-grade cervical intraepithelial neoplasia,” Cancer, vol. 111, no. 1, pp. 58–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Bollmann, M. Bollmann, D. E. Henson, and M. Bodo, “DNA cytometry confirms the utility of the Bethesda System for the classification of Papanicolaou smears,” Cancer, vol. 93, no. 3, pp. 222–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Bollmann, G. Méhes, R. Torka, N. Speich, C. Schmitt, and M. Bollmann, “Human papillomavirus typing and DNA ploidy determination of squamous intraepithelial lesions in liquid-based cytologic samples,” Cancer, vol. 99, no. 1, pp. 57–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Bollmann, G. Méhes, N. Speich, C. Schmitt, and M. Bollmann, “Aberrant, highly hyperdiploid cells in human papillomavirus-positive, abnormal cytologic samples are associated with progressive lesions of the uterine cervix,” Cancer, vol. 105, no. 2, pp. 96–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. H. J. Grote, H. V. Nguyen, A. G. Leick, and A. Böcking, “Identification of progressive cervical epithelial cell abnormalities using DNA image cytometry,” Cancer, vol. 102, no. 6, pp. 373–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Lorenzato, S. Caudroy, J. M. Nou et al., “Contribution of DNA ploidy image cytometry to the management of ASC cervical lesions,” Cancer, vol. 114, no. 4, pp. 263–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. D. Santin, F. Zhan, E. Bignotti et al., “Gene expression profiles of primary HPV16- and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy,” Virology, vol. 331, no. 2, pp. 269–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Murphy, M. Ring, C. C. Heffron et al., “p16INK4A, CDC6, and MCM5: predictive biomarkers in cervical preinvasive neoplasia and cervical cancer,” Journal of Clinical Pathology, vol. 58, no. 5, pp. 525–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. D. P. Malinowski, “Molecular diagnostic assays for cervical neoplasia: emerging markers for the detection of high-grade cervical disease,” BioTechniques, pp. 17–23, 2005. View at Google Scholar · View at Scopus
  69. M. T. Siddiqui, K. Hornaman, C. Cohen, and A. Nassar, “ProEx C immunocytochemistry and high-risk human papillomavirus DNA testing in papanicolaou tests with atypical squamous cell (ASC-US) cytology: correlation study with histologic biopsy,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 10, pp. 1648–1652, 2008. View at Google Scholar · View at Scopus
  70. K. R. Shroyer, P. Homer, D. Heinz, and M. Singh, “Validation of a novel immunocytochemical assay for topoisomerase II-α and minichromosome maintenance protein 2 expression in cervical cytology,” Cancer, vol. 108, no. 5, pp. 324–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. T. N. Oberg, B. R. Kipp, J. A. Vrana et al., “Comparison of p16INK4a and ProEx C immunostaining on cervical ThinPrep® cytology and biopsy specimens,” Diagnostic Cytopathology, vol. 38, no. 8, pp. 564–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Conesa-Zamora, A. Doménech-Peris, F. J. Orantes-Casado et al., “Effect of human papillomavirus on cell cycle-related proteins p16, Ki-67, cyclin D1, p53, and ProEx C in precursor lesions of cervical carcinoma: a tissue microarray study,” American Journal of Clinical Pathology, vol. 132, no. 3, pp. 378–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. S. B. Baylin and J. E. Ohm, “Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction?” Nature Reviews Cancer, vol. 6, no. 2, pp. 107–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. S. A. Belinsky, K. J. Nikula, W. A. Palmisano et al., “Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11891–11896, 1998. View at Google Scholar · View at Scopus
  75. E. Miranda, A. Destro, A. Malesci et al., “Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer,” British Journal of Cancer, vol. 95, no. 8, pp. 1101–1107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Schutte, R. H. Hruban, J. Geradts et al., “Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas,” Cancer Research, vol. 57, no. 15, pp. 3126–3130, 1997. View at Google Scholar · View at Scopus
  77. H. J. Yang, V. W. Liu, Y. Wang et al., “Detection of hypermethylated genes in tumor and plasma of cervical cancer patients,” Gynecologic Oncology, vol. 93, no. 2, pp. 435–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. S. M. Dong, H. S. Kim, S. H. Rha, and D. Sidransky, “Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix,” Clinical Cancer Research, vol. 7, no. 7, pp. 1982–1986, 2001. View at Google Scholar · View at Scopus
  79. D. H. Jeong, M. Y. Youm, Y. N. Kim et al., “Promoter methylation of p16, DAPK, CDH1, and TIMP-3 genes in cervical cancer: correlation with clinicopathologic characteristics,” International Journal of Gynecological Cancer, vol. 16, no. 3, pp. 1234–1240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Lin, M. Gao, X. Zhang et al., “The hypermethylation and protein expression of p16INK4A and DNA repair gene O6 -methylguanine-DNA methyltransferase in various uterine cervical lesions,” Journal of Cancer Research and Clinical Oncology, vol. 131, no. 6, pp. 364–370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. J. S. Lea, R. Coleman, A. Kurien et al., “Aberrant p16 methylation is a biomarker for tobacco exposure in cervical squamous cell carcinogenesis,” American Journal of Obstetrics and Gynecology, vol. 190, no. 3, pp. 674–679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Kang, J. W. Kim, G. H. Kang et al., “Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma,” International Journal of Cancer, vol. 118, no. 9, pp. 2168–2171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. K. Virmani, C. Muller, A. Rathi, S. Zoechbauer-Mueller, M. Mathis, and A. F. Gazdar, “Aberrant methylation during cervical carcinogenesis,” Clinical Cancer Research, vol. 7, no. 3, pp. 584–589, 2001. View at Google Scholar · View at Scopus
  84. Y. F. Wong, T. K. Chung, T. H. Cheung et al., “Methylation of p16(INK4A) in primary gynecologic malignancy,” Cancer Letters, vol. 136, no. 2, pp. 231–235, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Nehls, S. Vinokurova, D. Schmidt et al., “p16 methylation does not affect protein expression in cervical carcinogenesis,” European Journal of Cancer, vol. 44, no. 16, pp. 2496–2505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. N. Wentzensen, M. E. Sherman, M. Schiffman, and S. S. Wang, “Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science,” Gynecologic Oncology, vol. 112, no. 2, pp. 293–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Wang, B. Zheng, S. Li et al., “Automated detection and analysis of fluorescent in situ hybridization spots depicted in digital microscopic images of Pap-smear specimens,” Journal of Biomedical Optics, vol. 14, no. 2, Article ID 021002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Heselmeyer-Haddad, K. Sommerfeld, N. M. White et al., “Genomic amplification of the human telomerase gene (TERC) in Pap smears predicts the development of cervical cancer,” American Journal of Pathology, vol. 166, no. 4, pp. 1229–1238, 2005. View at Google Scholar · View at Scopus
  89. K. Heselmeyer, E. Schröck, S. du Manoir et al., “Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 1, pp. 479–484, 1996. View at Publisher · View at Google Scholar · View at Scopus
  90. D. G. Allen, D. J. White, A. M. Hutchins et al., “Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer,” British Journal of Cancer, vol. 83, no. 12, pp. 1659–1663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. N. P. Caraway, A. Khanna, M. Dawlett et al., “Gain of the 3q26 region in cervicovaginal liquid-based pap preparations is associated with squamous intraepithelial lesions and squamous cell carcinoma,” Gynecologic Oncology, vol. 110, no. 1, pp. 37–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Seppo, G. R. Jalali, R. Babkowski et al., “Gain of 3q26: a genetic marker in low-grade squamous intraepithelial lesions (LSIL) of the uterine cervix,” Gynecologic Oncology, vol. 114, no. 1, pp. 80–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. E. A. Jarboe, L. C. Thompson, D. Heinz, J. A. McGregor, and K. R. Shroyer, “Telomerase and Human Papillomavirus as Diagnostic Adjuncts for Cervical Dysplasia and Carcinoma,” Human Pathology, vol. 35, no. 4, pp. 396–402, 2004. View at Publisher · View at Google Scholar · View at Scopus