Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 682480, 9 pages
http://dx.doi.org/10.1155/2012/682480
Review Article

Ovarian Cancer: Opportunity for Targeted Therapy

1Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
2Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA 91010, USA

Received 10 September 2011; Accepted 1 November 2011

Academic Editor: Ritu Salani

Copyright © 2012 Tomoko Tagawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” Ca-A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. B. T. Hennessy, R. L. Coleman, and M. Markman, “Ovarian cancer,” The Lancet, vol. 374, no. 9698, pp. 1371–1382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Kurman and I. M. Shih, “The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory,” American Journal of Surgical Pathology, vol. 34, no. 3, pp. 433–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Kurman and I. M. Shih, “Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications,” International Journal of Gynecological Pathology, vol. 27, no. 2, pp. 151–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Chien, G. Aletti, D. A. Bell, G. L. Keeney, V. Shridhar, and L. C. Hartmann, “Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer,” Journal of Cellular Biochemistry, vol. 102, no. 5, pp. 1117–1129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Bell, “Origins and molecular pathology of ovarian cancer,” Modern Pathology, vol. 18, supplement 2, pp. S19–S32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Piek, P. J. van Diest, R. P. Zweemer et al., “Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer,” Journal of Pathology, vol. 195, no. 4, pp. 451–456, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Callahan, C. P. Crum, F. Medeiros et al., “Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction,” Journal of Clinical Oncology, vol. 25, no. 25, pp. 3985–3990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. D. W. Kindelberger, Y. Lee, A. Miron et al., “Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship,” American Journal of Surgical Pathology, vol. 31, no. 2, pp. 161–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. I. M. Shih and R. J. Kurman, “Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis,” American Journal of Pathology, vol. 164, no. 5, pp. 1511–1518, 2004. View at Google Scholar · View at Scopus
  11. J. D. Seidman and F. Khedmati, “Exploring the histogenesis of ovarian mucinous and transitional cell (Brenner) neoplasms and their relationship with walthard cell nests: a study of 120 tumors,” Archives of Pathology and Laboratory Medicine, vol. 132, no. 11, pp. 1753–1760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Veras, T. L. Mao, A. Ayhan et al., “Cystic and adenofibromatous clear cell carcinomas of the ovary: distinctive tumors that differ in their pathogenesis and behavior: a clinicopathologic analysis of 122 cases,” American Journal of Surgical Pathology, vol. 33, no. 6, pp. 844–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. T. Wheeler, K. A. Bell, R. J. Kurman, and M. E. Sherman, “Minimal uterine serous carcinoma: diagnosis and clinicopathologic correlation,” American Journal of Surgical Pathology, vol. 24, no. 6, pp. 797–806, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J. Kurman and I.-M. Shih, “Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer-Shifting the paradigm,” Human Pathology, vol. 42, no. 7, pp. 918–931, 2011. View at Publisher · View at Google Scholar
  15. I. M. Shih and R. J. Kurman, “Molecular pathogenesis of ovarian borderline tumors: new insights and old challenges,” Clinical Cancer Research, vol. 11, no. 20, pp. 7273–7279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Gershenson, C. C. Sun, K. H. Lu et al., “Clinical behavior of stage II-IV low-grade serous carcinoma of the ovary,” Obstetrics and Gynecology, vol. 108, no. 2, pp. 361–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Bell and R. E. Scully, “Early de novo ovarian carcinoma. A study of fourteen cases,” Cancer, vol. 73, no. 7, pp. 1859–1864, 1994. View at Google Scholar · View at Scopus
  18. G. Singer, R. Stöhr, L. Cope et al., “Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation,” American Journal of Surgical Pathology, vol. 29, no. 2, pp. 218–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Jones, T. L. Wang, I. M. Shih et al., “Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma,” Science, vol. 330, no. 6001, pp. 228–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. C. Wiegand, S. P. Shah, O. M. Al-Agha et al., “ARID1A mutations in endometriosis-associated ovarian carcinomas,” New England Journal of Medicine, vol. 363, no. 16, pp. 1532–1543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Network TCGAR, “Integrated genomic analyses of ovarian cancer,” Nature, vol. 474, pp. 609–615, 2011. View at Google Scholar
  22. P. C. Fong, D. S. Boss, T. A. Yap et al., “Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers,” New England Journal of Medicine, vol. 361, no. 2, pp. 123–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Veeck, S. Ropero, F. Setien et al., “BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors,” Journal of Clinical Oncology, vol. 28, no. 29, pp. e563–e564, 2010. View at Publisher · View at Google Scholar
  24. R. I. Gregory and R. Shiekhattar, “MicroRNA biogenesis and cancer,” Cancer Research, vol. 65, no. 9, pp. 3509–3512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Hernando, “microRNAs and cancer: role in tumorigenesis, patient classification and therapy,” Clinical and Translational Oncology, vol. 9, no. 3, pp. 155–160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Winter and S. Diederichs, “MicroRNA biogenesis and cancer,” Methods in Molecular Biology, vol. 676, pp. 3–22, 2011. View at Google Scholar
  27. W. Zhang, J. E. Dahlberg, and W. Tam, “MicroRNAs in tumorigenesis: a primer,” American Journal of Pathology, vol. 171, no. 3, pp. 728–738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. H. Lee, S. Subramanian, A. H. Beck et al., “MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary,” PLoS ONE, vol. 4, no. 10, Article ID e7314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Lin, W. Chen, J. Huang et al., “MicroRNA expression profiles in human colorectal cancers with liver metastases,” Oncology Reports, vol. 25, no. 3, pp. 739–747, 2011. View at Publisher · View at Google Scholar
  30. J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Mayr, M. T. Hemann, and D. P. Bartel, “Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation,” Science, vol. 315, no. 5818, pp. 1576–1579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Mahajan, Z. Liu, L. Gellert et al., “HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma,” Modern Pathology, vol. 23, no. 5, pp. 673–681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. J. Wei, J. Wu, C. Luan et al., “HMGA2: a potential biomarker complement to P53 for detection of early-stage high-grade papillary serous carcinoma in fallopian tubes,” American Journal of Surgical Pathology, vol. 34, no. 1, pp. 18–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Malek, E. Bakhidze, A. Noske et al., “HMGA2 gene is a promising target for ovarian cancer silencing therapy,” International Journal of Cancer, vol. 123, no. 2, pp. 348–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Shell, S. M. Park, A. R. Radjabi et al., “Let-7 expression defines two differentiation stages of cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11400–11405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Matei, M. W. Sill, H. A. Lankes et al., “Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a Gynecologic Oncology Group trial,” Journal of Clinical Oncology, vol. 29, no. 1, pp. 69–75, 2011. View at Publisher · View at Google Scholar
  37. M. Friedlander, K. C. Hancock, D. Rischin et al., “A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer,” Gynecologic Oncology, vol. 119, no. 1, pp. 32–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. K. Chambers, M. C. Clouser, A. F. Baker et al., “Overexpression of tumor vascular endothelial growth factor A may portend an increased likelihood of progression in a phase II trial of bevacizumab and erlotinib in resistant ovarian cancer,” Clinical Cancer Research, vol. 16, no. 21, pp. 5320–5328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. J. Weroha, A. L. Oberg, K. L. Ziegler et al., “Phase II trial of lapatinib and topotecan (LapTop) in patients with platinum-refractory/resistant ovarian and primary peritoneal carcinoma,” Gynecologic Oncology, vol. 122, no. 1, pp. 116–120, 2011. View at Publisher · View at Google Scholar
  40. M. A. Bookman, K. M. Darcy, D. Clarke-Pearson, R. A. Boothby, and I. R. Horowitz, “Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group,” Journal of Clinical Oncology, vol. 21, no. 2, pp. 283–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Tagawa, R. Morgan, M. Cristea et al., “Comparison of HMGA2 expression in serous versus endometrioid subtypes of human ovarian carcinoma,” in City of Hope Comprehensive Cancer Center, 2010. View at Google Scholar
  42. L. J. Copeland, L. Vaccarello, and G. S. Lewandowski, “Second-look laparotomy in epithelial ovarian cancer,” Obstetrics and Gynecology Clinics of North America, vol. 21, no. 1, pp. 155–166, 1994. View at Google Scholar · View at Scopus
  43. S. C. Rubin, W. J. Hoskins, T. B. Hakes, M. Markman, J. M. Cain, and J. L. Lewis Jr., “Recurrence after negative second-look laparotomy for ovarian cancer: analysis of risk factors,” American Journal of Obstetrics and Gynecology, vol. 159, no. 5, pp. 1094–1098, 1988. View at Google Scholar · View at Scopus
  44. D. K. Armstrong, “Relapsed ovarian cancer: challenges and management strategies for a chronic disease,” Oncologist, vol. 7, supplement 5, pp. 20–28, 2002. View at Google Scholar · View at Scopus
  45. M. R. Brown, J. O. Blanchette, and E. C. Kohn, “Angiogenesis in ovarian cancer,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 14, no. 6, pp. 901–918, 2000. View at Publisher · View at Google Scholar
  46. L. A. Hefler, A. Mustea, D. Könsgen et al., “Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer,” Clinical Cancer Research, vol. 13, no. 3, pp. 898–901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Burger, M. W. Sill, B. J. Monk, B. E. Greer, and J. I. Sorosky, “Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5165–5171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. Cannistra, U. A. Matulonis, R. T. Penson et al., “Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5180–5186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. ASCO 2011 Annual Meeting Abstracts, http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_category_abstracts_view&confID=102&subCatID=142.
  50. S. Mabuchi, C. Kawase, D. A. Altomare et al., “mTOR is a promising therapeutic target both in cisplatin-sensitive and cisplatin-resistant clear cell carcinoma of the ovary,” Clinical Cancer Research, vol. 15, no. 17, pp. 5404–5413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Serrano-Olvera, A. Dueñas-González, D. Gallardo-Rincón, M. Candelaria, and J. de la Garza-Salazar, “Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer,” Cancer Treatment Reviews, vol. 32, no. 3, pp. 180–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Meden, D. Marx, T. Raab, M. Kron, A. Schauer, and W. Kuhn, “EGF-R and overexpression of the oncogene c-erbB-2 in ovarian cancer: immunohistochemical findings and prognostic value,” Journal of Obstetrics and Gynaecology, vol. 21, no. 2, pp. 167–178, 1995. View at Google Scholar
  53. E. V. Høgdall, L. Christensen, S. K. Kjaer et al., “Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA ovarian cancer study,” Cancer, vol. 98, no. 1, pp. 66–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. S. Mano, A. Awada, A. di Leo et al., “Rates of topoisomerase II-alpha and HER-2 gene amplification and expression in epithelial ovarian carcinoma,” Gynecologic Oncology, vol. 92, no. 3, pp. 887–895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Wu, R. A. Soslow, D. S. Marshall, M. Leitao, and B. Chen, “Her-2/neu expression and amplification in early stage ovarian surface epithelial neoplasms,” Gynecologic Oncology, vol. 95, no. 3, pp. 570–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. D. J. Slamon, W. Godolphin, L. A. Jones et al., “Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer,” Science, vol. 244, no. 4905, pp. 707–712, 1989. View at Google Scholar · View at Scopus
  57. B. Tanner, E. Kreutz, W. Weikel et al., “Prognostic significance of c-erbB-2 mRNA in ovarian carcinoma,” Gynecologic Oncology, vol. 62, no. 2, pp. 268–277, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Felip, J. M. del Campo, D. Rubio, M. T. Vidal, R. Colomer, and B. Bermejo, “Overexpression of c-erbB-2 in epithelial ovarian cancer: prognostic value and relationship with response to chemotherapy,” Cancer, vol. 75, no. 8, pp. 2147–2152, 1995. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Tuefferd, J. Couturier, F. Penault-Llorca et al., “HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients,” PLoS ONE, vol. 2, no. 11, Article ID e1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. S. Gordon, D. Matei, C. Aghajanian et al., “Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status,” Journal of Clinical Oncology, vol. 24, no. 26, pp. 4324–4332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. D. B. Agus, R. W. Akita, W. D. Fox et al., “Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth,” Cancer Cell, vol. 2, no. 2, pp. 127–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Konner, R. J. Schilder, F. A. DeRosa et al., “A phase II study of cetuximab/paclitaxel/carboplatin for the initial treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancer,” Gynecologic Oncology, vol. 110, no. 2, pp. 140–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. P. A. Vasey, M. Gore, R. Wilson et al., “A phase Ib trial of docetaxel, carboplatin and erlotinib in ovarian, fallopian tube and primary peritoneal cancers,” British Journal of Cancer, vol. 98, no. 11, pp. 1774–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Hirte, A. Oza, K. Swenerton et al., “A phase II study of erlotinib (OSI-774) given in combination with carboplatin in patients with recurrent epithelial ovarian cancer (NCIC CTG IND.149),” Gynecologic Oncology, vol. 118, no. 3, pp. 308–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. V. Blank, P. Christos, J. P. Curtin et al., “Erlotinib added to carboplatin and paclitaxel as first-line treatment of ovarian cancer: a phase II study based on surgical reassessment,” Gynecologic Oncology, vol. 119, no. 3, pp. 451–456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. S. E. Rivkin, J. A. M. Carolyn Muller, J. Moon et al., “A phase I/II study of lapatinib plus carboplatin and paclitaxel in relapsed ovarian and breast cancer,” Clinical Ovarian Cancer, vol. 2, pp. 112–117, 2009. View at Google Scholar
  67. A. A. Secord, J. A. Blessing, D. K. Armstrong et al., “Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 108, pp. 493–499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. “ABT 888 with cytoxan Randomized Phase II study,” http://clinicaltrials.gov/ct2/show/NCT01306032.
  69. F. McPhillips, P. Mullen, K. G. MacLeod et al., “Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells,” Carcinogenesis, vol. 27, no. 4, pp. 729–739, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. F. McPhillips, P. Mullen, B. P. Monia et al., “Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer,” British Journal of Cancer, vol. 85, no. 11, pp. 1753–1758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. L. F. Sempere, M. Christensen, A. Silahtaroglu et al., “Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer,” Cancer Research, vol. 67, no. 24, pp. 11612–11620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. F. Yu, H. Yao, P. Zhu et al., “Let-7 regulates self renewal and tumorigenicity of breast cancer cells,” Cell, vol. 131, no. 6, pp. 1109–1123, 2007. View at Publisher · View at Google Scholar · View at Scopus