Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 905024, 12 pages
http://dx.doi.org/10.1155/2012/905024
Research Article

Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

1NorChip AS, Industriveien 8, 3490 Klokkarstua, Norway
2University of Oslo, 0316 Oslo, Norway
3Department of Histopathology, Trinity College Dublin and Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dolphins Barn, Dublin 8, Ireland
4SINTEF ICT, MiNaLab Facility, Gaustadalléen 23C, 0373 Oslo, Norway
5Institut für Mikrotechnik Mainz, Carl-Zeiss Straße 18-20, 55129 Mainz, Germany
6Center of Smart Interfaces, TU Darmstadt, Petersenstraße 32, 64287 Darmstadt, Germany
7Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
8BioFluidix GmbH, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
9Department of Micro and Nano Systems Technology, Faculty of Technology and Maritime Sciences, Vestfold University College, Raveien 197, 3184 Borre, Norway

Received 21 July 2011; Accepted 6 September 2011

Academic Editor: Adhemar Longatto-Filho

Copyright © 2012 Anja Gulliksen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Yager, G. J. Domingo, and J. Gerdes, “Point-of-care diagnostics for global health,” Annual Review of Biomedical Engineering, vol. 10, pp. 107–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Zhang and D. Xing, “Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends,” Nucleic Acids Research, vol. 35, no. 13, pp. 4223–4237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Mark, S. Haeberle, G. Roth, F. Von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153–1182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. H. Schulte, R. L. Bardell, and B. H. Weigl, “Microfluidic technologies in clinical diagnostics,” Clinica Chimica Acta, vol. 321, no. 1-2, pp. 1–10, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. J. Tüdos, G. A. J. Besselink, and R. B. M. Schasfoort, “Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry,” Lab on a Chip, vol. 1, no. 2, pp. 83–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Yager, T. Edwards, E. Fu et al., “Microfluidic diagnostic technologies for global public health,” Nature, vol. 442, no. 7101, pp. 412–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab on a Chip, vol. 7, no. 1, pp. 41–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Su, K. Chakrabarty, and R. B. Fair, “Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 2, pp. 211–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. H. zur Hausen, “Papillomaviruses and cancer: from basic studies to clinical application,” Nature Reviews Cancer, vol. 2, no. 5, pp. 342–350, 2002. View at Google Scholar · View at Scopus
  10. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca-A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  11. S. Hovland, M. Arbyn, A. K. Lie et al., “A comprehensive evaluation of the accuracy of cervical pre-cancer detection methods in a high-risk area in East Congo,” British Journal of Cancer, vol. 102, no. 6, pp. 957–965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Compton, “Nucleic acid sequence-based amplification,” Nature, vol. 350, no. 6313, pp. 91–92, 1991. View at Google Scholar · View at Scopus
  13. T. Baier, T. E. Hansen-Hagge, R. Gransee et al., “Hands-free sample preparation platform for nucleic acid analysis,” Lab on a Chip, vol. 9, no. 23, pp. 3399–3405, 2009. View at Publisher · View at Google Scholar
  14. T. Molden, J. F. Nygård, I. Kraus et al., “Predicting CIN2+ when detecting HPV mRNA and DNA by PreTect HPV-proofer and consensus PCR: a 2-year follow-up of women with ASCUS or LSIL Pap smear,” International Journal of Cancer, vol. 114, no. 6, pp. 973–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Keegan, J. McInerney, L. Pilkington et al., “Comparison of HPV detection technologies: hybrid capture 2, PreTect HPV-Proofer and analysis of HPV DNA viral load in HPV16, HPV18 and HPV33 E6/E7 mRNA positive specimens,” Journal of Virological Methods, vol. 155, no. 1, pp. 61–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. W. Sørbye, S. Fismen, T. J. Gutteberg, and E. S. Mortensen, “HPV mRNA test in women with minor cervical lesions: experience of the University Hospital of North Norway,” Journal of Virological Methods, vol. 169, no. 1, pp. 219–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. W. Sørbye, S. Fismen, T. Gutteberg, and E. S. Mortensen, “Triage of women with minor cervical lesions: data suggesting a “test and treat” approach for HPV E6/E7 mRNA testing,” PLoS ONE, vol. 5, no. 9, Article ID e12724, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Cuschieri, M. J. Whitley, and H. A. Cubie, “Human papillomavirus type specific DNA and RNA persistence—implications for cervical disease progression and monitoring,” Journal of Medical Virology, vol. 73, no. 1, pp. 65–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Kraus, T. Molden, R. Holm et al., “Presence of E6 and E7 mRNA from human papillomavirus types 16, 18, 31, 33, and 45 in the majority of cervical carcinomas,” Journal of Clinical Microbiology, vol. 44, no. 4, pp. 1310–1317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Riegger, M. M. Mielnik, A. Gulliksen et al., “Dye-based coatings for hydrophobic valves and their application to polymer labs-on-a-chip,” Journal of Micromechanics and Microengineering, vol. 20, no. 4, Article ID 045021, 2010. View at Publisher · View at Google Scholar
  21. W. Streule, T. Lindemann, G. Birkle, R. Zengerle, and P. Koltay, “PipeJet: a simple disposable dispenser for the nano- and microliter range,” Journal of the Association for Laboratory Automation, vol. 9, no. 5, pp. 300–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Gulliksen, L. Solli, F. Karlsen et al., “Real-time nucleic acid sequence-based amplification in nanoliter volumes,” Analytical Chemistry, vol. 76, no. 1, pp. 9–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Gulliksen, L. A. Solli, K. S. Drese et al., “Parallel nanoliter detection of cancer markers using polymer microchips,” Lab on a Chip, vol. 5, no. 4, pp. 416–420, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Furuberg, M. Mielnik, A. Gulliksen et al., “RNA amplification chip with parallel microchannels and droplet positioning using capillary valves,” Microsystem Technologies, vol. 14, no. 4-5, pp. 673–681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Boom, C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-Van Dillen, and J. Van Der Noordaa, “Rapid and simple method for purification of nucleic acids,” Journal of Clinical Microbiology, vol. 28, no. 3, pp. 495–503, 1990. View at Google Scholar
  26. L. Riegger, Back-End Processing in Lab-on-a-Chip Fabrication, Suedwestdeutscher Verlag fuer Hochschulschriften, 2011.
  27. J. Kim, M. Mauk, D. Chen et al., “A PCR reactor with an integrated alumina membrane for nucleic acid isolation,” Analyst, vol. 135, no. 9, pp. 2408–2414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Chen, M. G. Mauk, J. Wang et al., “A microfluidic system for saliva-based detection of infectious diseases,” Annals of the New York Academy of Sciences, vol. 1098, pp. 429–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. I. K. Dimov, J. L. Garcia-Cordero, J. O'Grady et al., “Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics,” Lab on a Chip, vol. 8, no. 12, pp. 2071–2078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhang, S. Park, S. Yang, and T. H. Wang, “An all-in-one microfluidic device for parallel DNA extraction and gene analysis,” Biomedical Microdevices, vol. 12, no. 6, pp. 1043–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus