Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 907971, 12 pages
http://dx.doi.org/10.1155/2012/907971
Research Article

Histopathological Growth Pattern, Proteolysis and Angiogenesis in Chemonaive Patients Resected for Multiple Colorectal Liver Metastases

1Department of Oncology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
2The Finsen Laboratory, Rigshospitalet, Copenhagen University Hospital, 2200 Copenhagen, Denmark
3Biotech Research and Innovation Centre (BRIC), Copenhagen University, 2200 Copenhagen, Denmark
4Translational Cancer Research Unit, GZA Hospitals St.-Augustinus, 2610, Antwerp, Belgium
5Departments of Surgery, Medicine and Oncology, McGill University Health Center, McGill University, Montreal, Quebec, Canada H3A 1A1
6Department of Pathology, The Gade Institute, Haukeland Hospital, 5021 Bergen, Norway
7Department of Surgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
8Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark

Received 2 April 2012; Accepted 11 June 2012

Academic Editor: Claudia Lanari

Copyright © 2012 Rikke Løvendahl Eefsen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA: A Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012. View at Google Scholar
  2. D. Brachet, E. Lermite, A. Rouquette, G. Lorimier, A. Hamy, and J. P. Arnaud, “Prognostic factors of survival in repeat liver resection for recurrent colorectal metastases: review of sixty-two cases treated at a single institution,” Diseases of the Colon and Rectum, vol. 52, no. 3, pp. 475–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. V. P. Khatri, K. G. Chee, and N. J. Petrelli, “Modern multimodality approach to hepatic colorectal metastases: solutions and controversies,” Surgical Oncology, vol. 16, no. 1, pp. 71–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. C. McMillan and C. S. McArdle, “Epidemiology of colorectal liver metastases,” Surgical Oncology, vol. 16, no. 1, pp. 3–5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Hurwitz, L. Fehrenbacher, W. Novotny et al., “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2335–2342, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Tabernero, E. Van Cutsem, E. Díaz-Rubio et al., “Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 25, no. 33, pp. 5225–5232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Folprecht, M. P. Lutz, P. Schöffski et al., “Cetuximab and irinotecan/5-fluorouracil/folinic acid is a safe combination for the first-line treatment of patients with epidermal growth factor receptor expressing metastatic colorectal carcinoma,” Annals of Oncology, vol. 17, no. 3, pp. 450–456, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kopetz, G. J. Chang, M. J. Overman et al., “Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 22, pp. 3677–3683, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. G. Fernandez, J. A. Drebin, D. C. Linehan, F. Dehdashti, B. A. Siegel, and S. M. Strasberg, “Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET),” Annals of Surgery, vol. 240, no. 3, pp. 438–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Fusai and B. R. Davidson, “Strategies to increase the resectability of liver metastases from colorectal cancer,” Digestive Surgery, vol. 20, no. 6, pp. 481–496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Nordlinger, H. Sorbye, B. Glimelius et al., “Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial,” The Lancet, vol. 371, no. 9617, pp. 1007–1016, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. P. B. Vermeulen, C. Colpaert, R. Salgado et al., “Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia,” Journal of Pathology, vol. 195, no. 3, pp. 336–342, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Stessels, G. G. Van den Eynden, I. Van den Auwera et al., “Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia,” British Journal of Cancer, vol. 90, no. 7, pp. 1429–1436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Illemann, N. C. Bird, A. W. Majeed et al., “Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases,” International Journal of Cancer, vol. 124, no. 8, pp. 1860–1870, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Illemann, N. C. Bird, A. W. Majeed et al., “MMP-9 is differentially expressed in primary human colorectal adenocarcinomas and their metastases,” Molecular Cancer Research, vol. 4, no. 5, pp. 293–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Illemann, U. Hansen, H. J. Nielsen et al., “Leading-edge myofibroblasts in human colon cancer express plasminogen activator inhibitor-1,” American Journal of Clinical Pathology, vol. 122, no. 2, pp. 256–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Pyke, P. Kristensen, E. Ralfkiaer et al., “Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas,” American Journal of Pathology, vol. 138, no. 5, pp. 1059–1067, 1991. View at Google Scholar · View at Scopus
  18. S. Paku and K. Lapis, “Morphological aspects of angiogenesis in experimental liver metastases,” American Journal of Pathology, vol. 143, no. 3, pp. 926–936, 1993. View at Google Scholar · View at Scopus
  19. M. S. Solaun, L. Mendoza, M. De Luca et al., “Endostatin inhibits murine colon carcinoma sinusoidal-type metastases by preferential targeting of hepatic sinusoidal endothelium,” Hepatology, vol. 35, no. 5, pp. 1104–1116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. G. G. Van den Eynden, N. C. Bird, A. W. Majeed, S. Van Laere, L. Y. Dirix, and P. B. Vermeulen, “The histological growth pattern of colorectal cancer liver metastases has prognostic value,” Clinical and Experimental Metastasis, vol. 29, no. 6, pp. 541–549, 2012. View at Google Scholar
  21. E. Ronne, G. Hoyer-Hansen, N. Brunner et al., “Urokinase receptor in breast cancer tissue extracts. Enzyme-linked immunosorbent assay with a combination of mono- and polyclonal antibodies,” Breast Cancer Research and Treatment, vol. 33, no. 3, pp. 199–207, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Plesner, M. Ploug, V. Ellis et al., “The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils,” Blood, vol. 83, no. 3, pp. 808–815, 1994. View at Google Scholar · View at Scopus
  23. O. D. Laerum, K. Ovrebo, A. Skarstein et al., “Prognosis in adenocarcinomas of lower oesophagus, gastro-oesophageal junction and cardia evaluated by uPAR-immunohistochemistry,” International Journal of Cancer, vol. 131, no. 3, pp. 558–569, 2012. View at Google Scholar
  24. W. Alpizar-Alpizar, I. J. Christensen, E. Santoni-Rugiu, A. Skarstein, K. Ovrebo, and O. D. Laerum, “Urokinase plasminogen activator receptor on invasive cancer cells: a prognostic factor in distal gastric adenocarcinoma,” International Journal of Cancer, vol. 131, no. 4, pp. E329–E336, 2012. View at Google Scholar
  25. P. Sardari Nia, J. Hendriks, G. Friedel, P. Van Schil, and E. Van Marck, “Distinct angiogenic and non-angiogenic growth patterns of lung metastases from renal cell carcinoma,” Histopathology, vol. 51, no. 3, pp. 354–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Sardari Nia, C. Colpaert, P. Vermeulen et al., “Different growth patterns of non-small cell lung cancer represent distinct biological subtypes,” Annals of Thoracic Surgery, vol. 85, no. 2, pp. 395–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Jubb, A. Cesario, M. Ferguson et al., “Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases,” British Journal of Cancer, vol. 104, no. 12, pp. 1877–1881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. L. E. Benjamin, D. Golijanin, A. Itin, D. Pode, and E. Keshet, “Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal,” The Journal of Clinical Investigation, vol. 103, no. 2, pp. 159–165, 1999. View at Google Scholar · View at Scopus
  29. A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K. H. Plate, and H. G. Augustin, “Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies,” Cancer Research, vol. 60, no. 5, pp. 1388–1393, 2000. View at Google Scholar · View at Scopus
  30. M. A. Shah, R. Khanin, L. Tang et al., “Molecular classification of gastric cancer: a new paradigm,” Clinical Cancer Research, vol. 17, no. 9, pp. 2693–2701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Halama, S. Michel, M. Kloor et al., “Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy,” Cancer Research, vol. 71, no. 17, pp. 5670–5677, 2011. View at Google Scholar
  32. L. B. Saltz, S. Clarke, E. Díaz-Rubio et al., “Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 2013–2019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Cassidy, S. Clarke, E. Díaz-Rubio et al., “Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 2006–2012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Lièvre, J. B. Bachet, D. Le Corre et al., “KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer,” Cancer Research, vol. 66, no. 8, pp. 3992–3995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. N. Thibodeau, A. J. French, J. M. Cunningham et al., “Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1,” Cancer Research, vol. 58, no. 8, pp. 1713–1718, 1998. View at Google Scholar · View at Scopus
  36. W. S. Samowitz, K. Curtin, K. N. Ma et al., “Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 9, pp. 917–923, 2001. View at Google Scholar · View at Scopus
  37. F. A. Sinicrope and D. J. Sargent, “Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications,” Clinical Cancer Research, vol. 18, no. 6, pp. 1506–1512, 2012. View at Google Scholar
  38. C. M. Ribic, D. J. Sargent, M. J. Moore et al., “Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer,” The New England Journal of Medicine, vol. 349, no. 3, pp. 247–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Fuchs, “Das sarkom des uvealtractus,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 12, no. 2, p. 233, 1882. View at Google Scholar
  40. S. Paget, “Distribution of secondary growths in cancer of the breast,” The Lancet, vol. 1, pp. 571–573, 1889. View at Google Scholar · View at Scopus