Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2012, Article ID 934918, 7 pages
Research Article

Vascular Disrupting Agent Arsenic Trioxide Enhances Thermoradiotherapy of Solid Tumors

1Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot No. 824, Little Rock, AR 72205, USA
2Department of Mechanical Engineering and Therapeutic Radiology, University of Minnesota, 240 Delaware Street, SE Slot No. 494, Minneapolis, MN 55455, USA

Received 3 June 2011; Revised 23 August 2011; Accepted 6 September 2011

Academic Editor: Sundaram Ramakrishnan

Copyright © 2012 Robert J. Griffin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Our previous studies demonstrated arsenic trioxide- (ATO-) induced selective tumor vascular disruption and augmentation of thermal or radiotherapy effect against solid tumors. These results suggested that a trimodality approach of radiation, ATO, and local hyperthermia may have potent therapeutic efficacy against solid tumors. Here, we report the antitumor effect of hypofractionated radiation followed by ATO administration and local 42.5 °C hyperthermia and the effects of cisplatin and thermoradiotherapy. We found that the therapeutic efficacy of ATO-based thermoradiotherapy was equal or greater than that of cisplatin-based thermoradiotherapy, and marked evidence of in vivo apoptosis and tumor necrosis were observed in ATO-treated tumors. We conclude that ATO-based thermoradiotherapy is a powerful means to control tumor growth by using vascular disruption to augment the effects of thermal and radiation therapy.