Table of Contents Author Guidelines Submit a Manuscript
Journal of Oncology
Volume 2013, Article ID 102735, 14 pages
http://dx.doi.org/10.1155/2013/102735
Review Article

Role of the Crosstalk between Autophagy and Apoptosis in Cancer

Department of Chemistry and Biochemistry, North Dakota State University, P.O. Box 6050, Dept. 2710, Fargo, ND 58102-6050, USA

Received 3 January 2013; Accepted 24 March 2013

Academic Editor: James L. Mulshine

Copyright © 2013 Minfei Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Levine and D. J. Klionsky, “Development by self-digestion: molecular mechanisms and biological functions of autophagy,” Developmental Cell, vol. 6, no. 4, pp. 463–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Shintani and D. J. Klionsky, “Autophagy in health and disease: a double-edged sword,” Science, vol. 306, no. 5698, pp. 990–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Seay, S. Dinesh-Kumar, and B. Levine, “Digesting oneself and digesting microbes: autophagy as a host response to viral infection,” in Modulation of Host Gene Expression and Innate Immunity by Viruses, P. Palese, Ed., pp. 245–279, Springer, Dordrecht, The Netherlands, 2005. View at Google Scholar
  4. B. Levine, Autophagy in Antiviral Host Defense, Wiley-Vch, Weinheim, Germany, 2006.
  5. B. Levine and V. Deretic, “Unveiling the roles of autophagy in innate and adaptive immunity,” Nature Reviews Immunology, vol. 7, no. 10, pp. 767–777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Mizushima, “Autophagy: process and function,” Genes & Development, vol. 21, no. 22, pp. 2861–2873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,” Cell, vol. 132, no. 1, pp. 27–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sinha and B. Levine, “The autophagy effector Beclin 1: a novel BH3-only protein,” Oncogene, vol. 27, no. 1, pp. S137–S148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Yorimitsu and D. J. Klionsky, “Autophagy: molecular machinery for self-eating,” Cell Death and Differentiation, vol. 12, supplement 2, pp. 1542–1552, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Maria Fimia, A. Stoykova, A. Romagnoli et al., “Ambra1 regulates autophagy and development of the nervous system,” Nature, vol. 447, no. 7148, pp. 1121–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. He and B. Levine, “The Beclin 1 interactome,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 140–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kang, H. J. Zeh, M. T. Lotze, and D. Tang, “The Beclin 1 network regulates autophagy and apoptosis,” Cell Death and Differentiation, vol. 18, no. 4, pp. 571–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Mizushima, T. Noda, and Y. Ohsumi, “Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway,” The EMBO Journal, vol. 18, no. 14, pp. 3888–3896, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Ichimura, T. Kirisako, T. Takao et al., “A ubiquitin-like system mediates protein lipidation,” Nature, vol. 408, no. 6811, pp. 488–492, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Ohsumi, “Molecular dissection of autophagy: two ubiquitin-like systems,” Nature Reviews Molecular Cell Biology, vol. 2, no. 3, pp. 211–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. C. Maiuri, E. Zalckvar, A. Kimchi, and G. Kroemer, “Self-eating and self-killing: crosstalk between autophagy and apoptosis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 741–752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Annunziato, S. Amoroso, A. Pannaccione et al., “Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions,” Toxicology Letters, vol. 139, no. 2-3, pp. 125–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Shimizu, Y. Eguchi, W. Kamiike et al., “Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bcl-XL,” Cancer Research, vol. 56, no. 9, pp. 2161–2166, 1996. View at Google Scholar · View at Scopus
  20. Y. Weinrauch and A. Zychlinsky, “The induction of apoptosis by bacterial pathogens,” Annual Review of Microbiology, vol. 53, pp. 155–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Brüne, “Nitric oxide: NO apoptosis or turning it ON?” Cell Death and Differentiation, vol. 10, no. 8, pp. 864–869, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Rajah, B. Valentinis, and P. Cohen, “Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-β1 on programmed cell death through a p53- and IGF-independent mechanism,” Journal of Biological Chemistry, vol. 272, no. 18, pp. 12181–12188, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yaoita and K. Nakajima, “Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail,” Journal of Biological Chemistry, vol. 272, no. 8, pp. 5122–5127, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Taylor, S. P. Cullen, and S. J. Martin, “Apoptosis: controlled demolition at the cellular level,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. I. Byrne and D. M. Ojcius, “Chlamydia and apoptosis: life and death decisions of an intracellular pathogen,” Nature Reviews Microbiology, vol. 2, no. 10, pp. 802–808, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Giansanti, A. Torriglia, and A. I. Scovassi, “Conversation between apoptosis and autophagy: is it your turn or mine?” Apoptosis, vol. 16, no. 4, pp. 321–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Pennarun, A. Meijer, E. G. E. de Vries, J. H. Kleibeuker, F. Kruyt, and S. de Jong, “Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer,” Biochimica et Biophysica Acta, vol. 1805, no. 2, pp. 123–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. W. Lowe and A. W. Lin, “Apoptosis in cancer,” Carcinogenesis, vol. 21, no. 3, pp. 485–495, 2000. View at Google Scholar · View at Scopus
  30. B. Levine, “Unraveling the role of autophagy in cancer,” Autophagy, vol. 2, no. 2, pp. 65–66, 2006. View at Google Scholar · View at Scopus
  31. E. Y. Liu and K. M. Ryan, “Autophagy and cancer—issues we need to digest,” Journal of Cell Science, vol. 125, no. 10, pp. 2349–2358, 2012. View at Google Scholar
  32. S. Fulda and K. M. Debatin, “Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy,” Oncogene, vol. 25, no. 34, pp. 4798–4811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Ashkenazi, “Targeting the extrinsic apoptosis pathway in cancer,” Cytokine and Growth Factor Reviews, vol. 19, no. 3-4, pp. 325–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Bold, P. M. Termuhlen, and D. J. McConkey, “Apoptosis, cancer and cancer therapy,” Surgical Oncology, vol. 6, no. 3, pp. 133–142, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. T. G. Cotter, “Apoptosis and cancer: the genesis of a research field,” Nature Reviews Cancer, vol. 9, no. 7, pp. 501–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Jin, “Autophagy, mitochondrial quality control, and oncogenesis,” Autophagy, vol. 2, no. 2, pp. 80–84, 2006. View at Google Scholar · View at Scopus
  37. V. Karantza-Wadsworth and E. White, “Role of autophagy in breast cancer,” Autophagy, vol. 3, no. 6, pp. 610–613, 2007. View at Google Scholar
  38. S. Jin and E. White, “Role of autophagy in cancer: management of metabolic stress,” Autophagy, vol. 3, no. 1, pp. 28–31, 2007. View at Google Scholar · View at Scopus
  39. Y. Tsujimoto and S. Shimizu, “Another way to die: autophagic programmed cell death,” Cell Death and Differentiation, vol. 12, supplement 2, pp. 1528–1534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. G. Graeber, C. Osmanian, T. Jacks et al., “Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours,” Nature, vol. 379, no. 6560, pp. 88–91, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Degenhardt, R. Mathew, B. Beaudoin et al., “Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis,” Cancer Cell, vol. 10, no. 1, pp. 51–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. X. H. Liang, S. Jackson, M. Seaman et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1,” Nature, vol. 402, no. 6762, pp. 672–676, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Qu, J. Yu, G. Bhagat et al., “Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1809–1820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, “Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15077–15082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Karantza-Wadsworth, S. Patel, O. Kravchuk et al., “Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis,” Genes & Development, vol. 21, no. 13, pp. 1621–1635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Eisenberg-Lerner, S. Bialik, H. U. Simon, and A. Kimchi, “Life and death partners: apoptosis, autophagy and the cross-talk between them,” Cell Death and Differentiation, vol. 16, no. 7, pp. 966–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. White and R. S. DiPaola, “The double-edged sword of autophagy modulation in cancer,” Clinical Cancer Research, vol. 15, no. 17, pp. 5308–5316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. X. H. Liang, L. K. Kleeman, H. H. Jiang et al., “Protection against fatal sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein,” Journal of Virology, vol. 72, no. 11, pp. 8586–8596, 1998. View at Google Scholar · View at Scopus
  49. E. Wirawan, L. Vande Walle, K. Kersse et al., “Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria,” Cell Death and Disease, vol. 1, no. 1, article e18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. T. Rohn, E. Wirawan, R. J. Brown, J. R. Harris, E. Masliah, and P. Vandenabeele, “Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain,” Neurobiology of Disease, vol. 43, no. 1, pp. 68–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Z.-Y. Li, Y. Yang, M. Ming, and B. Liu, “Mitochondrial ROS generation for regulation of autophagic pathways in cancer,” Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 5–8, 2011. View at Publisher · View at Google Scholar
  52. X. Yin, L. Cao, Y. Peng et al., “A critical role for UVRAG in apoptosis,” Autophagy, vol. 7, no. 10, pp. 1242–1244, 2011. View at Publisher · View at Google Scholar
  53. L. Radoshevich, L. Murrow, N. Chen et al., “ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death,” Cell, vol. 142, no. 4, pp. 590–600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. D. Rubinstein, M. Eisenstein, Y. Ber, S. Bialik, and A. Kimchi, “The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis,” Molecular Cell, vol. 44, no. 5, pp. 698–709, 2011. View at Publisher · View at Google Scholar
  55. J. O. Pyo, M. H. Jang, Y. K. Kwon et al., “Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death,” Journal of Biological Chemistry, vol. 280, no. 21, pp. 20722–20729, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Yousefi, R. Perozzo, I. Schmid et al., “Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis,” Nature Cell Biology, vol. 8, no. 10, pp. 1124–1132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Crighton, S. Wilkinson, J. O'Prey et al., “DRAM, a p53-induced modulator of autophagy, is critical for apoptosis,” Cell, vol. 126, no. 1, pp. 121–134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Feng, Y. Zhang, Y. Li, Z. Liu, J. Zuo, and F. Fang, “Two domains are critical for the nuclear localization of soluble adenylyl cyclase,” Biochimie, vol. 88, no. 3-4, pp. 319–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Kihara, Y. Kabeya, Y. Ohsumi, and T. Yoshimori, “Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network,” EMBO Reports, vol. 2, no. 4, pp. 330–335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. J. H. Stack, P. K. Herman, P. V. Schu, and S. D. Emr, “A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole,” The EMBO Journal, vol. 12, no. 5, pp. 2195–2204, 1993. View at Google Scholar · View at Scopus
  61. V. M. Aita, X. H. Liang, V. V. V. S. Murty et al., “Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21,” Genomics, vol. 59, no. 1, pp. 59–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. I. Abou El Hassan, D. C. J. Mastenbroek, W. R. Gerritsen, G. Giaccone, and F. A. E. Kruyt, “Overexpression of Bcl-2 abrogates chemo- and radiotherapy-induced sensitisation of NCI-H460 non-small-cell lung cancer cells to adenovirus-mediated expression of full-length TRAIL,” British Journal of Cancer, vol. 91, no. 1, pp. 171–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Liu, C. Page, D. R. Beidler, M. S. Wicha, and G. Núñez, “Overexpression of Bcl-X(L) promotes chemotherapy resistance of mammary tumors in a syngeneic mouse model,” American Journal of Pathology, vol. 155, no. 6, pp. 1861–1867, 1999. View at Google Scholar · View at Scopus
  64. V. N. Sumantran, M. W. Ealovega, G. Nunez, M. F. Clarke, and M. S. Wicha, “Overexpression of Bcl-X(S) sensitizes MCF-7 cells to chemotherapy-induced apoptosis,” Cancer Research, vol. 55, no. 12, pp. 2507–2510, 1995. View at Google Scholar · View at Scopus
  65. A. Bakhshi, J. P. Jensen, and P. Goldman, “Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around J(H) on chromosome 14 and near a transcriptional unit on 18,” Cell, vol. 41, no. 3, pp. 899–906, 1985. View at Google Scholar · View at Scopus
  66. M. L. Cleary and J. Sklar, “Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 21, pp. 7439–7443, 1985. View at Google Scholar · View at Scopus
  67. Y. Tsujimoto, J. Cossman, E. Jaffe, and C. M. Croce, “Involvement of the Bcl-2 gene in human follicular lymphoma,” Science, vol. 228, no. 4706, pp. 1440–1443, 1985. View at Google Scholar · View at Scopus
  68. T. J. McDonnell, N. Deane, F. M. Platt et al., “Bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation,” Cell, vol. 57, no. 1, pp. 79–88, 1989. View at Google Scholar · View at Scopus
  69. D. L. Vaux, S. Cory, and J. M. Adams, “Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells,” Nature, vol. 335, no. 6189, pp. 440–442, 1988. View at Google Scholar · View at Scopus
  70. A. Oberstein, P. D. Jeffrey, and Y. Shi, “Crystal structure of the Bcl-XL-beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 13123–13132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Feng, S. Huang, H. Wu, and M. Zhang, “Molecular basis of Bcl-XL's target recognition versatility revealed by the structure of Bcl-XL in complex with the BH3 domain of Beclin-1,” Journal of Molecular Biology, vol. 372, no. 1, pp. 223–235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Ku, J. S. Woo, C. Liang et al., “Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral Bcl-2 of murine γ-herpesvirus 68,” PLoS Pathogens, vol. 4, no. 2, article e25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Sinha, C. L. Colbert, N. Becker, Y. Wei, and B. Levine, “Molecular basis of the regulation of Beclin 1-dependent autophagy by the γ-herpesvirus 68 Bcl-2 homolog M11,” Autophagy, vol. 4, no. 8, pp. 989–997, 2008. View at Google Scholar · View at Scopus
  74. X. Li, L. He, K. H. Che et al., “Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG,” Nature Communications, vol. 3, no. 662, pp. 1–11, 2012. View at Google Scholar
  75. W. Huang, W. Choi, W. Hu et al., “Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein,” Cell Research, vol. 22, no. 3, pp. 473–489, 2012. View at Publisher · View at Google Scholar
  76. S. Pattingre, A. Tassa, X. Qu et al., “Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy,” Cell, vol. 122, no. 6, pp. 927–939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Pattingre and B. Levine, “Bcl-2 inhibition of autophagy: a new route to cancer?” Cancer Research, vol. 66, no. 6, pp. 2885–2888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Sun, J. H. Liu, L. Jin et al., “Over-expression of the Beclin 1 gene upregulates chemosensitivity to anti-cancer drugs by enhancing therapy-induced apoptosis in cervix squamous carcinoma CaSki cells,” Cancer Letters, vol. 294, no. 2, pp. 204–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. U. Akar, A. Chaves-Reyez, M. Barria et al., “Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells,” Autophagy, vol. 4, no. 5, pp. 669–679, 2008. View at Google Scholar · View at Scopus
  80. T. Oltersdorf, S. W. Elmore, A. R. Shoemaker et al., “An inhibitor of Bcl-2 family proteins induces regression of solid tumours,” Nature, vol. 435, no. 7042, pp. 677–681, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. M. C. Maiuri, G. Le Toumelin, A. Criollo et al., “Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1,” The EMBO Journal, vol. 26, no. 10, pp. 2527–2539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Wei, S. Pattingre, S. Sinha, M. Bassik, and B. Levine, “JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy,” Molecular Cell, vol. 30, no. 6, pp. 678–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Wei, S. Sinha, and B. Levine, “Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation,” Autophagy, vol. 4, no. 7, pp. 949–951, 2008. View at Google Scholar · View at Scopus
  84. H. Li, P. Wang, J. Yu, and L. Zhang, “Cleaving Beclin 1 to suppress autophagy in chemotherapy-induced apoptosis,” Autophagy, vol. 7, no. 10, pp. 1239–1241, 2011. View at Publisher · View at Google Scholar
  85. S. M. Ruppert, W. Lib, G. Zhang et al., “The major isoforms of Bim contribute to distinct biological activities that govern the processes of autophagy and apoptosis in interleukin-7 dependent lymphocytes,” Biochimica et Biophysica Acta, vol. 1823, no. 10, pp. 1877–1893, 2012. View at Publisher · View at Google Scholar
  86. Z. Fu and D. J. Tindall, “FOXOs, cancer and regulation of apoptosis,” Oncogene, vol. 27, no. 16, pp. 2312–2319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Y. Yang, C. S. Zong, W. Xia et al., “ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation,” Nature Cell Biology, vol. 10, no. 2, pp. 138–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Rahmani, M. M. Aust, E. Attkisson et al., “Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process,” Blood, vol. 119, no. 25, pp. 6089–6098, 2012. View at Publisher · View at Google Scholar
  89. K. E. Ewings, C. M. Wiggins, and S. J. Cook, “Bim and the pro-survival Bcl-2 proteins: opposites attract, ERK repels,” Cell Cycle, vol. 6, no. 18, pp. 2236–2240, 2007. View at Google Scholar · View at Scopus
  90. K. E. Ewings, K. Hadfield-Moorhouse, C. M. Wiggins et al., “ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-XL,” The EMBO Journal, vol. 26, no. 12, pp. 2856–2867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Luo, M. Garcia-Arencibia, R. Zhao et al., “Bim inhibits autophagy by recruiting Beclin 1 to microtubules,” Molecular Cell, vol. 47, no. 3, pp. 359–370, 2012. View at Publisher · View at Google Scholar
  92. H. Puthalakath, D. C. S. Huang, L. A. O'Reilly, S. M. King, and A. Strasser, “The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex,” Molecular Cell, vol. 3, no. 3, pp. 287–296, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. J. A. Wickenden, H. Jin, M. Johnson et al., “Colorectal cancer cells with the BRAFV600E mutation are addicted to the ERK1/2 pathway for growth factor-independent survival and repression of BIM,” Oncogene, vol. 27, no. 57, pp. 7150–7161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. C. W. Kinkade, M. Castillo-Martin, A. Puzio-Kuter et al., “Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model,” The Journal of Clinical Investigation, vol. 118, no. 9, pp. 3051–3064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. E. Itakura, C. Kishi, K. Inoue, and N. Mizushima, “Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG,” Molecular Biology of the Cell, vol. 19, no. 12, pp. 5360–5372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Takahashi, D. Coppola, N. Matsushita et al., “Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis,” Nature Cell Biology, vol. 9, no. 10, pp. 1142–1151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Liang, P. Feng, B. Ku et al., “Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG,” Nature Cell Biology, vol. 8, no. 7, pp. 688–698, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Itakura and N. Mizushima, “Atg14 and UVRAG: mutually exclusive subunits of mammalian Beclin 1-PI3K complexes,” Autophagy, vol. 5, no. 4, pp. 534–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Mei et al., “Intrinsically disordered regions in autophagy,” Unpublished data.
  100. C. G. Noble, J. M. Dong, E. Manser, and H. Song, “Bcl-XL and UVRAG cause a monomer-dimer switch in Beclin 1,” Journal of Biological Chemistry, vol. 283, no. 38, pp. 26274–26282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Ionov, N. Nowak, M. Perucho, S. Markowitz, and J. K. Cowell, “Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability,” Oncogene, vol. 23, no. 3, pp. 639–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Knævelsrud, T. Ahlquist, M. A. Merok et al., “UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy,” Autophagy, vol. 6, no. 7, pp. 863–870, 2010. View at Google Scholar · View at Scopus
  103. Y. Takahashi, M. Karbowski, H. Yamaguchi et al., “Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9369–9382, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Mazumder, G. S. Choudhary, S. Al-Harbi, and A. Almasan, “Mcl-1 phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells,” Cancer Research, vol. 72, no. 12, pp. 3069–3079, 2012. View at Publisher · View at Google Scholar
  105. M. F. van Delft, A. H. Wei, K. D. Mason et al., “The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized,” Cancer Cell, vol. 10, no. 5, pp. 389–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. W. Sieghart, D. Losert, S. Strommer et al., “Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy,” Journal of Hepatology, vol. 44, no. 1, pp. 151–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. L. Song, D. Coppola, S. Livingston, D. Cress, and E. B. Haura, “Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells,” Cancer Biology and Therapy, vol. 4, no. 3, pp. 267–276, 2005. View at Google Scholar · View at Scopus
  108. C. Akgul, “Mcl-1 is a potential therapeutic target in multiple types of cancer,” Cellular and Molecular Life Sciences, vol. 66, no. 8, pp. 1326–1336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. C. H. An, M. S. Kim, N. J. Yoo, S. W. Park, and S. H. Lee, “Mutational and expressional analyses of ATG5, an autophagy-related gene, in gastrointestinal cancers,” Pathology Research and Practice, vol. 207, no. 7, pp. 433–437, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. M. S. Kim, S. Y. Song, J. Y. Lee, N. J. Yoo, and S. H. Lee, “Expressional and mutational analyses of ATG5 gene in prostate cancers,” APMIS, vol. 119, no. 11, pp. 802–807, 2011. View at Publisher · View at Google Scholar
  111. L. Tourneur, S. Delluc, V. Lévy et al., “Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome,” Cancer Research, vol. 64, no. 21, pp. 8101–8108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Kulkarni, K. B. Reddy, F. J. Esteva, H. C. F. Moore, G. T. Budd, and R. R. Tubbs, “Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer,” Oncogene, vol. 29, no. 9, pp. 1339–1350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. S. J. Storr, N. O. Carragher, M. C. Frame, T. Parr, and S. G. Martin, “The calpain system and cancer,” Nature Reviews Cancer, vol. 11, no. 5, pp. 364–374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. I. J. Smith, Z. Aversa, P. O. Hasselgren et al., “Calpain activity is increased in skeletal muscle from gastric cancer patients with no or minimal weight loss,” Muscle and Nerve, vol. 43, no. 3, pp. 410–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. G. Matlashewski, L. Banks, D. Pim, and L. Crawford, “Analysis of human p53 proteins and mRNA levels in normal and transformed cells,” European Journal of Biochemistry, vol. 154, no. 3, pp. 665–672, 1986. View at Google Scholar · View at Scopus
  116. D. Crighton, A. Woiwode, C. Zhang et al., “p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB,” The EMBO Journal, vol. 22, no. 11, pp. 2810–2820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Müller, S. Wilder, D. Bannasch et al., “p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs,” Journal of Experimental Medicine, vol. 188, no. 11, pp. 2033–2045, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Kuribayashi and W. S. El-Deiry, “Regulation of programmed cell death by the p53 pathway,” Advances in Experimental Medicine and Biology, vol. 615, pp. 201–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Reuter, S. Eifes, M. Dicato, B. B. Aggarwal, and M. Diederich, “Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1340–1351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. U. M. Moll, S. Wolff, D. Speidel, and W. Deppert, “Transcription-independent pro-apoptotic functions of p53,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 631–636, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. M. C. Moroni, E. S. Hickman, E. L. Denchi et al., “Apaf-1 is a transcriptional target for E2F and p53,” Nature Cell Biology, vol. 3, no. 6, pp. 552–558, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. Z. Feng, “p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 2, article a001057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. X. Sui, L. Jin, X. Huang, S. Geng, C. He, and X. Hu, “p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment,” Autophagy, vol. 7, no. 6, pp. 565–571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Thomas, T. Giesler, and E. White, “p53 mediates Bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway,” Oncogene, vol. 19, no. 46, pp. 5259–5269, 2000. View at Google Scholar · View at Scopus
  125. H. Y. Lin, A. Shih, F. B. Davis et al., “Resveratrol induced serine phosphorylation of p53 causes apoptosis in a mutant p53 prostate cancer cell line,” Journal of Urology, vol. 168, no. 2, pp. 748–755, 2002. View at Google Scholar · View at Scopus
  126. Y. Sakamoto, S. Kato, M. Takahashi et al., “Contribution of autophagic cell death to p53-dependent cell death in human glioblastoma cell line SF126,” Cancer Science, vol. 102, no. 4, pp. 799–807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Scherz-Shouval, H. Weidberg, C. Gonen, S. Wilder, Z. Elazar, and M. Oren, “p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18511–18516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. K. M. Livesey, R. Kang, P. Vernon et al., “p53/HMGB1 complexes regulate autophagy and apoptosis,” Cancer Research, vol. 72, no. 8, pp. 1996–2005, 2012. View at Publisher · View at Google Scholar
  129. M. A. C. Pratt, D. White, N. Kushwaha, E. Tibbo, and M. Y. Niu, “Cytoplasmic mutant p53 increases Bcl-2 expression in estrogen receptor-positive breast cancer cells,” Apoptosis, vol. 12, no. 4, pp. 657–669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. J. J. Russo, R. A. Bohenzky, M. C. Chien et al., “Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8),” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 25, pp. 14862–14867, 1996. View at Publisher · View at Google Scholar · View at Scopus
  131. C. L. Afonso, E. R. Tulman, Z. Lu, L. Zsak, D. L. Rock, and G. F. Kutish, “The genome of Turkey herpesvirus,” Journal of Virology, vol. 75, no. 2, pp. 971–978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Subramanian, M. Kuppuswamy, J. Gysbers, S. Mak, and G. Chinnadurai, “19-kDa tumor antigen coded by early region E1b of adenovirus 2 is required for efficient synthesis and for protection of viral DNA,” Journal of Biological Chemistry, vol. 259, no. 19, pp. 11777–11783, 1984. View at Google Scholar · View at Scopus
  133. A. Brun, F. Rodriguez, J. M. Escribano, and C. Alonso, “Functionality and cell anchorage dependence of the African swine fever virus gene A179L, a viral Bcl-2 homolog, in insect cells,” Journal of Virology, vol. 72, no. 12, pp. 10227–10233, 1998. View at Google Scholar · View at Scopus
  134. C. L. Afonso, E. R. Tulman, Z. Lu, L. Zsak, G. F. Kutish, and D. L. Rock, “The genome of fowlpox virus,” Journal of Virology, vol. 74, no. 8, pp. 3815–3831, 2000. View at Publisher · View at Google Scholar · View at Scopus
  135. B. Tarodi, T. Subramanian, and G. Chinnadurai, “Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection,” Virology, vol. 201, no. 2, pp. 404–407, 1994. View at Publisher · View at Google Scholar · View at Scopus
  136. G. H. Wang, T. L. Garvey, and J. I. Cohen, “The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis,” Journal of General Virology, vol. 80, no. 10, pp. 2737–2740, 1999. View at Google Scholar · View at Scopus
  137. A. Cuconati and E. White, “Viral homologs of Bcl-2: role of apoptosis in the regulation of virus infection,” Genes & Development, vol. 16, no. 19, pp. 2465–2478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  138. B. D. de Lima, J. S. May, S. Marques, J. P. Simas, and P. G. Stevenson, “Murine gammaherpesvirus 68 Bcl-2 homologue contributes to latency establishment in vivo,” Journal of General Virology, vol. 86, part 1, pp. 31–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. D. S. Bellows, M. Howell, C. Pearson, S. A. Hazlewood, and J. M. Hardwick, “Epstein-Barr virus BALF1 is a Bcl-2-like antagonist of the herpesvirus antiapoptotic Bcl-2 proteins,” Journal of Virology, vol. 76, no. 5, pp. 2469–2479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Cabras, G. Decaussin, Y. Zeng et al., “Epstein-Barr virus encoded BALF1 gene is transcribed in Burkitt's lymphoma cell lines and in nasopharyngeal carcinoma's biopsies,” Journal of Clinical Virology, vol. 34, no. 1, pp. 26–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Muralidhar, G. Veytsmann, B. Chandran, D. Ablashi, J. Doniger, and L. J. Rosenthal, “Characterization of the human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) oncogene, Kaposin (ORF K12),” Journal of Clinical Virology, vol. 16, no. 3, pp. 203–213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Kvansakul, A. H. Wei, J. I. Fletcher et al., “Structural basis for apoptosis inhibition by Epstein-Barr virus bhrf1,” PLoS Pathogens, vol. 6, no. 12, Article ID e1001236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. Q. Huang, A. M. Petros, H. W. Virgin, S. W. Fesik, and E. T. Olejniczak, “Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3428–3433, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. E. H. Y. Cheng, J. Nicholas, D. S. Bellows et al., “A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 2, pp. 690–694, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. B. Ku, J. S. Woo, C. Liang, K. H. Lee, J. U. Jung, and B. H. Oh, “An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins,” Autophagy, vol. 4, no. 4, pp. 519–520, 2008. View at Google Scholar · View at Scopus
  146. H. Ito, H. Aoki, F. Kühnel et al., “Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus,” Journal of the National Cancer Institute, vol. 98, no. 9, pp. 625–636, 2006. View at Publisher · View at Google Scholar
  147. P. L. Peng, W. H. Kuo, H. C. Tseng, and F. P. Chou, “Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death,” International Journal of Radiation Oncology Biology Physics, vol. 70, no. 2, pp. 529–542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. G. Kroemer and B. Levine, “Autophagic cell death: the story of a misnomer,” Nature Reviews Molecular Cell Biology, vol. 9, no. 12, pp. 1004–1010, 2008. View at Publisher · View at Google Scholar · View at Scopus