Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2010, Article ID 970865, 8 pages
http://dx.doi.org/10.1155/2010/970865
Research Article

Metformin Improves Insulin Signaling in Obese Rats via Reduced IKK Action in a Fiber-Type Specific Manner

1The Metabolic Institute for the Study of Diabetes and Obesity, East Carolina University, Greenville, NC 27834, USA
2Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27834, USA
3Department of Physiology, East Carolina University, Greenville, NC 27834, USA
4Department of Biology, East Carolina University, Greenville, NC 27834, USA

Received 26 May 2009; Accepted 27 October 2009

Academic Editor: Eliot Brinton

Copyright © 2010 Benjamin T. Bikman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, S. C. Smith Jr., and C. Lenfant, “Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition,” Circulation, vol. 109, no. 3, pp. 433–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Perseghin, K. Petersen, and G. I. Shulman, “Cellular mechanism of insulin resistance: potential links with inflammation,” International Journal of Obesity, vol. 27, supplement 3, pp. S6–S11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Arkan, A. L. Hevener, F. R. Greten et al., “IKK-ß links inflammation to obesity-induced insulin resistance,” Nature Medicine, vol. 11, no. 2, pp. 191–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Mokdad, J. S. Marks, D. F. Stroup, and J. L. Gerberding, “Actual causes of death in the United States, 2000,” Journal of the American Medical Association, vol. 291, no. 10, pp. 1238–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. B. B. Kahn and J. S. Flier, “Obesity and insulin resistance,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 473–481, 2000. View at Google Scholar · View at Scopus
  7. J. D. McGarry, “Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 7–18, 2002. View at Google Scholar · View at Scopus
  8. R. E. Gray, C. J. Tanner, W. J. Pories, K. G. MacDonald, and J. A. Houmard, “Effect of weight loss on muscle lipid content in morbidly obese subjects,” American Journal of Physiology, vol. 284, no. 4, pp. E726–E732, 2003. View at Google Scholar · View at Scopus
  9. B. T. Bikman, D. Zheng, W. J. Pories et al., “Mechanism for improved insulin sensitivity after gastric bypass surgery,” Journal of Clinical Endocrinology & Metabolism, vol. 93, no. 12, pp. 4656–4663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Cai, M. Yuan, D. F. Frantz et al., “Local and systemic insulin resistance resulting from hepatic activation of IKK-ß and NF-?B,” Nature Medicine, vol. 11, no. 2, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ghanim, R. Garg, A. Aljada et al., “Suppression of nuclear factor-?B and stimulation of inhibitor ?B by troglitazone: evidence for an antiinflammatory effect and a potential antiatherosclerotic effect in the obese,” Journal of Clinical Endocrinology & Metabolism, vol. 86, no. 3, pp. 1306–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Yuan, N. Konstantopoulos, J. Lee et al., “Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKß,” Science, vol. 293, no. 5535, pp. 1673–1677, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. J. Lessard, Z.-P. Chen, M. J. Watt et al., “Chronic rosiglitazone treatment restores AMPKa2 activity in insulin-resistant rat skeletal muscle,” American Journal of Physiology, vol. 290, no. 2, pp. E251–E257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Suwa, T. Egashira, H. Nakano, H. Sasaki, and S. Kumagai, “Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo,” Journal of Applied Physiology, vol. 101, no. 6, pp. 1685–1692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Cacicedo, N. Yagihashi, J. F. Keaney Jr., N. B. Ruderman, and Y. Ido, “AMPK inhibits fatty acid-induced increases in NF-κB transactivation in cultured human umbilical vein endothelial cells,” Biochemical and Biophysical Research Communications, vol. 324, no. 4, pp. 1204–1209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Hattori, K. Suzuki, S. Hattori, and K. Kasai, “Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells,” Hypertension, vol. 47, no. 6, pp. 1183–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. S. Jhun, Q. Jin, Y. T. Oh et al., “5-aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-a production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages,” Biochemical and Biophysical Research Communications, vol. 318, no. 2, pp. 372–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Giri, N. Nath, B. Smith, B. Viollet, A. K. Singh, and I. Singh, “5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase,” Journal of Neuroscience, vol. 24, no. 2, pp. 479–487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Cleasby, N. Dzamko, B. D. Hegarty, G. J. Cooney, E. W. Kraegen, and J.-M. Ye, “Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms,” Diabetes, vol. 53, no. 12, pp. 3258–3266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Musi, “AMP-activated protein kinase and type 2 diabetes,” Current Medicinal Chemistry, vol. 13, no. 5, pp. 583–589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. R. Ropelle, J. R. Pauli, P. O. Prada et al., “Reversal of diet-induced insulin resistance with a single bout of exercise in the rat: the role of PTP1B and IRS-1 serine phosphorylation,” Journal of Physiology, vol. 577, no. 3, pp. 997–1007, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. I. Itani, N. B. Ruderman, F. Schmieder, and G. Boden, “Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α,” Diabetes, vol. 51, no. 7, pp. 2005–2011, 2002. View at Google Scholar · View at Scopus
  24. S. Sinha, G. Perdomo, N. F. Brown, and R. M. O'Doherty, “Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor κB,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 41294–41301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-J. Yin, Y. Yamamoto, and R. B. Gaynor, “The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β,” Nature, vol. 396, no. 6706, pp. 77–80, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. J. K. Kim, Y.-J. Kim, J. J. Fillmore et al., “Prevention of fat-induced insulin resistance by salicylate,” Journal of Clinical Investigation, vol. 108, no. 3, pp. 437–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Schmitz-Peiffer, “Protein kinase C and lipid-induced insulin resistance in skeletal muscle,” Annals of the New York Academy of Sciences, vol. 967, pp. 146–157, 2002. View at Google Scholar · View at Scopus
  28. G. Frangioudakis, J. G. Burchfield, S. Narasimhan et al., “Diverse roles for protein kinase C d and protein kinase C e in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C d,” Diabetologia, vol. 52, no. 12, 2616 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Ragheb, G. M. L. Shanab, A. M. Medhat, D. M. Seoudi, K. Adeli, and I. G. Fantus, “Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways,” Biochemical and Biophysical Research Communications, vol. 389, no. 2, pp. 211–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Huang, R. Bansode, M. Mehta, and K. D. Mehta, “Loss of protein kinase Cβ function protects mice again diet-induced obesity and development of hepatic steatosis and insulin resistance,” Hepatology, vol. 49, no. 5, pp. 1525–1536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Fisher, J. Gao, D.-H. Han, J. O. Holloszy, and L. A. Nolte, “Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin,” American Journal of Physiology, vol. 282, no. 1, pp. E18–E23, 2002. View at Google Scholar · View at Scopus
  32. G. F. Merrill, E. J. Kurth, D. G. Hardie, and W. W. Winder, “AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle,” American Journal of Physiology, vol. 273, no. 6, pp. E1107–E1112, 1997. View at Google Scholar · View at Scopus
  33. H. W. Jeong, K. C. Hsu, J.-W. Lee et al., “Berberine suppresses proinflammatory responses through AMPK activation in macrophages,” American Journal of Physiology, vol. 296, no. 4, pp. E955–E964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. R. Steinberg, B. J. Michell, B. J. W. van Denderen et al., “Tumor necrosis factor a-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling,” Cell Metabolism, vol. 4, no. 6, pp. 465–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. R. C. Ho, M. F. Hirshman, Y. Li et al., “Regulation of I?B kinase and NF-?B in contracting adult rat skeletal muscle,” American Journal of Physiology, vol. 289, no. 4, pp. C794–C801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Hawley, A. E. Gadalla, G. S. Olsen, and D. G. Hardie, “The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism,” Diabetes, vol. 51, no. 8, pp. 2420–2425, 2002. View at Google Scholar · View at Scopus
  37. M. R. Owen, E. Doran, and A. P. Halestrap, “Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain,” Biochemical Journal, vol. 348, no. 3, pp. 607–614, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. B. A. Bhatt, J. J. Dube, N. Dedousis, J. A. Reider, and R. M. O'Doherty, “Diet-induced obesity and acute hyperlipidemia reduce IκBα levels in rat skeletal muscle in a fiber-type dependent manner,” American Journal of Physiology, vol. 290, no. 1, pp. R233–R240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Iglesias, S. M. Furler, G. J. Cooney, E. W. Kraegen, and J.-M. Ye, “AMP-activated protein kinase activation by AICAR increases both muscle fatty acid and glucose uptake in white muscle of insulin-resistant rats in vivo,” Diabetes, vol. 53, no. 7, pp. 1649–1654, 2004. View at Publisher · View at Google Scholar · View at Scopus