Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 307542, 7 pages
http://dx.doi.org/10.1155/2011/307542
Research Article

Associations of FTO and MC4R Variants with Obesity Traits in Indians and the Role of Rural/Urban Environment as a Possible Effect Modifier

1School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
2MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol BS8 2BN, UK
3Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
4Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
5Bloomsbury Centre for Genetic Epidemiology and Statistics, London WC1E 6BT, UK
6South Asia Network for Chronic Disease, Public Health Foundation of India, New Delhi 110 016, India
7Centre for Chronic Disease Control, New Delhi 110 016, India
8Public Health Foundation of India, New Delhi 110 016, India

Received 2 December 2010; Accepted 4 March 2011

Academic Editor: Yvon Chagnon

Copyright © 2011 A. E. Taylor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” Science, vol. 316, no. 5826, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. F. Loos, C. M. Lindgren, S. Li et al., “Common variants near MC4R are associated with fat mass, weight and risk of obesity,” Nature Genetics, vol. 40, no. 6, pp. 768–775, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Lindgren, I. M. Heid, J. C. Randall et al., “Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution,” PLoS Genetics, vol. 5, no. 6, Article ID e1000508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. K. Cornes, P. A. Lind, S. E. Medland, G. W. Montgomery, D. R. Nyholt, and N. G. Martin, “Replication of the association of common rs9939609 variant of FTO with increased BMI in an Australian adult twin population but no evidence for gene by environment (G x E) interaction,” International Journal of Obesity, vol. 33, no. 1, pp. 75–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hakanen, O. T. Raitakari, T. Lehtimäki et al., “FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1281–1287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. S. Yajnik, C. S. Janipalli, S. Bhaskar et al., “FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians,” Diabetologia, vol. 52, no. 2, pp. 247–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Tenesa, H. Campbell, E. Theodoratou et al., “Common genetic variants at the MC4R locus are associated with obesity, but not with dietary energy intake or colorectal cancer in the Scottish population,” International Journal of Obesity, vol. 33, no. 2, pp. 284–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. P. Zobel, C. H. Andreasen, N. Grarup et al., “Variants near MC4R are associated with obesity and influence obesity-related quantitative traits in a population of middle-aged people: studies of 14,940 danes,” Diabetes, vol. 58, no. 3, pp. 757–764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Chambers, P. Elliott, D. Zabaneh et al., “Common genetic variation near MC4R is associated with waist circumference and insulin resistance,” Nature Genetics, vol. 40, no. 6, pp. 716–718, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. F. Been, S. K. Nath, S. K. Ralhan et al., “Replication of association between a common variant near melanocortin-4 receptor gene and obesity-related traits in Asian sikhs,” Obesity, vol. 18, no. 2, pp. 425–429, 2010. View at Publisher · View at Google Scholar
  11. C. H. Andreasen, K. L. Stender-Petersen, M. S. Mogensen et al., “Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation,” Diabetes, vol. 57, no. 1, pp. 95–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Rampersaud, B. D. Mitchell, T. I. Pollin et al., “Physical activity and the association of common FTO gene variants with body mass index and obesity,” Archives of Internal Medicine, vol. 168, no. 16, pp. 1791–1797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. E. Cecil, R. Tavendale, P. Watt, M. M. Hetherington, and C. N. A. Palmer, “An obesity-associated FTO gene variant and increased energy intake in children,” The New England Journal of Medicine, vol. 359, no. 24, pp. 2558–2566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Fischer, L. Koch, C. Emmerling et al., “Inactivation of the Fto gene protects from obesity,” Nature, vol. 458, no. 7240, pp. 894–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Vimaleswaran, S. Li, J. H. Zhao et al., “Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene,” American Journal of Clinical Nutrition, vol. 90, no. 2, pp. 425–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. J. Timpson, P. M. Emmett, T. M. Frayling et al., “The fat mass- and obesity-associated locus and dietary intake in children,” American Journal of Clinical Nutrition, vol. 88, no. 4, pp. 971–978, 2008. View at Google Scholar · View at Scopus
  17. C. Church, L. Moir, F. McMurray et al., “Overexpression of Fto leads to increased food intake and results in obesity,” Nature Genetics, vol. 42, no. 12, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar
  18. M. Tanofsky-Kraff, J. C. Han, K. Anandalingam et al., “The FTO gene rs9939609 obesity-risk allele and loss of control over eating,” American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1483–1488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Liu, H. Zhu, V. Lagou et al., “FTO variant rs9939609 is associated with body mass index and waist circumference, but not with energy intake or physical activity in European- and African-American youth,” BMC Medical Genetics, vol. 11, no. 1, article 57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. J. Lappalainen, A.-M. Tolppanen, M. Kolehmainen et al., “The common variant in the FTO gene did not modify the effect of lifestyle changes on body weight: the finnish diabetes prevention study,” Obesity, vol. 17, no. 4, pp. 832–836, 2009. View at Publisher · View at Google Scholar
  21. M. Hakanen, O. T. Raitakari, T. Lehtimäki et al., “FTO genotype is associated with body mass index after the age of seven years but not with energy intake or leisure-time physical activity,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1281–1287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. Reddy, B. Shah, C. Varghese, and A. Ramadoss, “Responding to the threat of chronic diseases in India,” Lancet, vol. 366, no. 9498, pp. 1744–1749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Yadav and A. Krishnan, “Changing patterns of diet, physical activity and obesity among urban, rural and slum populations in North India,” Obesity Reviews, vol. 9, no. 5, pp. 400–408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ebrahim, S. Kinra, L. Bowen et al., “The effect of rural-to-urban migration on obesity and diabetes in india: a cross-sectional study,” PLoS Medicine, vol. 7, no. 4, Article ID e1000268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Misra and L. Khurana, “The metabolic syndrome in South Asians: epidemiology, determinants, and prevention,” Metabolic Syndrome and Related Disorders, vol. 7, no. 6, pp. 497–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Deepa, S. Farooq, M. Datta, R. Deepa, and V. Mohan, “Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in Asian Indians: the Chennai Urban Rural Epidemiology Study (CURES-34),” Diabetes/Metabolism Research and Reviews, vol. 23, no. 2, pp. 127–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Gupta, P. C. Deedwania, A. Gupta, S. Rastogi, R. B. Panwar, and K. Kothari, “Prevalence of metabolic syndrome in an Indian urban population,” International Journal of Cardiology, vol. 97, no. 2, pp. 257–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Chow, M. Cardona, P. K. Raju et al., “Cardiovascular disease and risk factors among 345 adults in rural India-the Andhra Pradesh Rural Health Initiative,” International Journal of Cardiology, vol. 116, no. 2, pp. 180–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Lyngdoh, S. Kinra, Y. B. Shlomo et al., “Sib-recruitment for studying migration and its impact on obesity and diabetes,” Emerging Themes in Epidemiology, vol. 3, article 2, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. S. Reddy, D. Prabhakaran, V. Chaturvedi et al., “Methods for establishing a surveillance system for cardiovascular diseases in Indian industrial populations,” Bulletin of the World Health Organization, vol. 84, no. 6, pp. 461–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kinra, L. J. Bowen, T. Lyngdoh et al., “Sociodemographic patterning of non-communicable disease risk factors in rural India: a cross sectional study,” BMJ, vol. 341, Article ID c4974, 2010. View at Publisher · View at Google Scholar
  32. J. V. G. A. Durnin and J. Womersley, “Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years,” British Journal of Nutrition, vol. 32, no. 1, pp. 79–97, 1974. View at Google Scholar · View at Scopus
  33. S. Purcell, B. Neale, K. Todd-Brown et al., “PLINK: a tool set for whole-genome association and population-based linkage analyses,” American Journal of Human Genetics, vol. 81, no. 3, pp. 559–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. W. Fulker, S. S. Cherny, P. C. Sham, and J. K. Hewitt, “Combined linkage and association sib-pair analysis for quantitative traits,” American Journal of Human Genetics, vol. 64, no. 1, pp. 259–267, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Reich, K. Thangaraj, N. Patterson, A. L. Price, and L. Singh, “Reconstructing Indian population history,” Nature, vol. 461, no. 7263, pp. 489–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. R. Abecasis, L. R. Cardon, and W. O. C. Cookson, “A general test of association for quantitative traits in nuclear families,” American Journal of Human Genetics, vol. 66, no. 1, pp. 279–292, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Neale, Statistical Modeling with Mx, Department of Human Genetics, MCV, Richmond, Va, USA, 1997.
  38. F. Dudbridge, “Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data,” Human Heredity, vol. 66, no. 2, pp. 87–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Zabaneh and D. J. Balding, “A genome-wide association study of the metabolic syndrome in Indian Asian men,” PLoS ONE, vol. 5, no. 8, Article ID e11961, 2010. View at Publisher · View at Google Scholar
  40. S. I. I. Kring, C. Holst, E. Zimmermann et al., “FTO gene associated fatness in relation to body fat distribution and metabolic traits throughout a broad range of fatness,” PLoS ONE, vol. 3, no. 8, Article ID e2958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. N. L. Heard-Costa, M. Carola Zillikens, K. L. Monda et al., “NRXN3Is a novel locus for waist circumference: a genome-wide association study from the CHARGE consortium,” PLoS Genetics, vol. 5, no. 6, Article ID e1000539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. I. M. Heid, A. U. Jackson, J. C. Randall et al., “Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution,” Nature Genetics, vol. 42, no. 11, pp. 949–960, 2010. View at Publisher · View at Google Scholar
  43. M. Deurenberg-Yap, S. K. Chew, and P. Deurenberg, “Elevated body fat percentage and cardiovascular risks at low body mass index levels among Singaporean Chinese, Malays and Indians,” Obesity Reviews, vol. 3, no. 3, pp. 209–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Cauchi, F. Stutzmann, C. Cavalcanti-Proença et al., “Combined effects of MC4R and FTO common genetic variants on obesity in European general populations,” Journal of Molecular Medicine, vol. 87, no. 5, pp. 537–546, 2009. View at Publisher · View at Google Scholar · View at Scopus