Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011 (2011), Article ID 435245, 9 pages
http://dx.doi.org/10.1155/2011/435245
Review Article

Tissue-Specific Effects of Bariatric Surgery Including Mitochondrial Function

1Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
2Hormone Laboratory, Haukeland University Hospital, 5021 Bergen, Norway

Received 2 September 2010; Accepted 14 December 2010

Academic Editor: Francesco Saverio Papadia

Copyright © 2011 Simon N. Dankel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Buchwald, R. Estok, and R. Estok, “Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis,” American Journal of Medicine, vol. 122, no. 3, pp. 248–e5, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. Martins, M. Strømmen, O. A. Stavne, R. Nossum, R. Mårvik, and B. Kulseng, “Bariatric surgery versus lifestyle interventions for morbid obesity-changes in body weight, risk factors and comorbidities at 1year,” Obesity Surgery. In press. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. P. Cannon and A. Kumar, “Treatment of overweight and obesity: lifestyle, pharmacologic, and surgical options,” Clinical Cornerstone, vol. 9, no. 4, pp. 55–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W. J. Pories, K. G. MacDonald, and K. G. MacDonald, “Surgical treatment of obesity and its effect on diabetes: 10-y follow-up,” American Journal of Clinical Nutrition, vol. 55, no. 2, pp. 582S–585S, 1992. View at Google Scholar · View at Scopus
  5. P. R. Schauer, B. Burguera, and B. Burguera, “Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus,” Annals of Surgery, vol. 238, no. 4, pp. 467–485, 2003. View at Google Scholar · View at Scopus
  6. M. H. Ahmed and C. D. Byrne, “Bariatric surgery and renal function: a precarious balance between benefit and harm,” Nephrology Dialysis Transplantation, vol. 25, no. 10, pp. 3142–3147, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. P. Shankar, M. Boylan, and K. Sriram, “Micronutrient deficiencies after bariatric surgery,” Nutrition, vol. 26, no. 11-12, pp. 1031–1037, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. P. E. O'Brien, T. McPhail, T. B. Chaston, and J. B. Dixon, “Systematic review of medium-term weight loss after bariatric operations,” Obesity Surgery, vol. 16, no. 8, pp. 1032–1040, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. S. Hess, D. W. Hess, and R. S. Oakley, “The biliopancreatic diversion with the duodenal switch: results beyond 10 years,” Obesity Surgery, vol. 15, no. 3, pp. 408–416, 2005. View at Google Scholar · View at Scopus
  10. D. E. Cummings, “Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery,” International Journal of Obesity, vol. 33, no. 1, pp. S33–S40, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. F. Fery, N. P. D'Attellis, and E. O. Balasse, “Mechanisms of starvation diabetes: a study with double tracer and indirect calorimetry,” American Journal of Physiology, vol. 259, no. 6, pp. E770–E777, 1990. View at Google Scholar · View at Scopus
  12. R. R. Wing, E. H. Blair, P. Bononi, M. D. Marcus, R. Watanabe, and R. N. Bergman, “Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients,” Diabetes Care, vol. 17, no. 1, pp. 30–36, 1994. View at Google Scholar · View at Scopus
  13. T. A. Hughes, J. T. Gwynne, and B. R. Switzer, “Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus,” American Journal of Medicine, vol. 77, no. 1, pp. 7–17, 1984. View at Google Scholar · View at Scopus
  14. T. P. Markovic, A. B. Jenkins, L. V. Campbell, S. M. Furier, E. W. Kraegen, and D. J. Chisholm, “The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM,” Diabetes Care, vol. 21, no. 5, pp. 687–694, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Wickremesekera, G. Miller, T. DeSilva Naotunne, G. Knowles, and R. S. Stubbs, “Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study,” Obesity Surgery, vol. 15, no. 4, pp. 474–481, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. B. Dixon, P. E. O'Brien, and P. E. O'Brien, “Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial,” Journal of the American Medical Association, vol. 299, no. 3, pp. 316–323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. R. Kashyap, S. Daud, and S. Daud, “Acute effects of gastric bypass versus gastric restrictive surgery on β-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes,” International Journal of Obesity, vol. 34, no. 3, pp. 462–471, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. R. Peterli, B. Wölnerhanssen, and B. Wölnerhanssen, “Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial,” Annals of Surgery, vol. 250, no. 2, pp. 234–241, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. Guidone, M. Manco, and M. Manco, “Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery,” Diabetes, vol. 55, no. 7, pp. 2025–2031, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. Salinari, C. Guidone, A. Bertuzzi, M. Manco, S. Asnaghi, and G. Mlngrone, “First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric Surgery,” Diabetes Care, vol. 32, no. 3, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. G. M. Campos, C. Rabl, and C. Rabl, “Improvement in peripheral glucose uptake after gastric bypass surgery is observed only after substantial weight loss has occurred and correlates with the magnitude of weight lost,” Journal of Gastrointestinal Surgery, vol. 14, no. 1, pp. 15–23, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. M. M. O. Lima, J. C. Pareja, S. M. Alegre et al., “Acute effect of Roux-en-Y gastric bypass on whole-body insulin sensitivity: a study with the euglycemic-hyperinsulinemic clamp,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 8, pp. 3871–3875, 2010. View at Publisher · View at Google Scholar · View at PubMed
  23. B. Laferrère, J. Teixeira, and J. Teixeira, “Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2479–2485, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. G. J. Service, G. B. Thompson, F. J. Service, J. C. Andrews, M. L. Collazo-Clavell, and R. V. Lloyd, “Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery,” The New England Journal of Medicine, vol. 353, no. 3, pp. 249–254, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. T. Carpenter, M. E. Trautmann, and M. E. Trautmann, “Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2192–2194, 2005. View at Publisher · View at Google Scholar · View at PubMed
  26. S. Troy, M. Soty, and M. Soty, “Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice,” Cell Metabolism, vol. 8, no. 3, pp. 201–211, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. B. Laferrère, S. Heshka, and S. Heshka, “Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes,” Diabetes Care, vol. 30, no. 7, pp. 1709–1716, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. D. J. Drucker, “The role of gut hormones in glucose homeostasis,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 24–32, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. D. Sandoval, “CNS GLP-1 regulation of peripheral glucose homeostasis,” Physiology and Behavior, vol. 94, no. 5, pp. 670–674, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. C. Yamada, Y. Yamada, and Y. Yamada, “Genetic inactivation of GIP signaling reverses aging-associated insulin resistance through body composition changes,” Biochemical and Biophysical Research Communications, vol. 364, no. 1, pp. 175–180, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. F. Rubino, P. Zizzari, and P. Zizzari, “The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat,” Endocrinology, vol. 146, no. 4, pp. 1745–1751, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. F. Rubino, A. Forgione, and A. Forgione, “The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes,” Annals of Surgery, vol. 244, no. 5, pp. 741–749, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. L. Rodriguez-Grunert, M. P. Galvao Neto, M. Alamo, A. C. Ramos, P. B. Baez, and M. Tarnoff, “First human experience with endoscopically delivered and retrieved duodenal-jejunal bypass sleeve,” Surgery for Obesity and Related Diseases, vol. 4, no. 1, pp. 55–59, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. G. Kral, W. Paez, and B. M. Wolfe, “Vagal nerve function in obesity: therapeutic implications,” World Journal of Surgery, vol. 33, no. 10, pp. 1995–2006, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. Camilleri, J. Toouli, and J. Toouli, “Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device,” Surgery for Obesity and Related Diseases, vol. 5, no. 2, pp. 224–229, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. R. Berthoud and B. Jeanrenaud, “Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats,” Endocrinology, vol. 105, no. 1, pp. 146–151, 1979. View at Google Scholar · View at Scopus
  37. A. Pocai, S. Obici, G. J. Schwartz, and L. Rossetti, “A brain-liver circuit regulates glucose homeostasis,” Cell Metabolism, vol. 1, no. 1, pp. 53–61, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. B. T. Bikman, D. Zheng, and D. Zheng, “Mechanism for improved insulin sensitivity after gastric bypass surgery,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 12, pp. 4656–4663, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Noakes, P. R. Foster, J. B. Keogh, A. P. James, J. C. Mamo, and P. M. Clifton, “Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk,” Nutrition and Metabolism, vol. 3, article 7, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. M. R. Gill and A. R. Cooper, “Physical activity and prevention of type 2 diabetes mellitus,” Sports Medicine, vol. 38, no. 10, pp. 807–824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. S. P. Poulos, D. B. Hausman, and G. J. Hausman, “The development and endocrine functions of adipose tissue,” Molecular and Cellular Endocrinology, vol. 323, no. 1, pp. 20–34, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Virtue and A. Vidal-Puig, “It's not how fat you are, it's what you do with it that counts.,” PLoS Biology, vol. 6, no. 9, article e237, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. H. E. Bays, J. M. González-Campoy, and J. M. González-Campoy, “Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity,” Expert Review of Cardiovascular Therapy, vol. 6, no. 3, pp. 343–368, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. H. E. Bays, B. Laferrère, J. Dixon, L. Aronne, J. M. González-Campoy, C. Apovian, and B. M. Wolfe, “Adiposopathy and bariatric surgery: is 'sick fat' a surgical disease?” International Journal of Clinical Practice, vol. 63, no. 9, pp. 1285–1300, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. J. Kim, C. Nian, and C. H. S. McIntosh, “Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes: a role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade,” Journal of Biological Chemistry, vol. 282, no. 12, pp. 8557–8567, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. N. Irwin and P. R. Flatt, “Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications,” Diabetologia, vol. 52, no. 9, pp. 1724–1731, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. F. Gregor, L. Yang, E. Fabbrini, B. S. Mohammed, J. C. Eagon, G. S. Hotamisligil, and S. Klein, “Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss,” Diabetes, vol. 58, no. 3, pp. 693–700, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. R. Cancello, C. Henegar, and C. Henegar, “Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss,” Diabetes, vol. 54, no. 8, pp. 2277–2286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. S. N. Dankel, D. J. Fadnes, and D. J. Fadnes, “Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss,” PloS One, vol. 5, no. 6, Article ID e11033, 2010. View at Publisher · View at Google Scholar · View at PubMed
  50. C. Henegar, J. Tordjman, and J. Tordjman, “Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity,” Genome Biology, vol. 9, no. 1, article R14, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. I. Dahlman, K. Linder, and K. Linder, “Changes in adipose tissue gene expression with energy-restricted diets in obese women,” American Journal of Clinical Nutrition, vol. 81, no. 6, pp. 1275–1285, 2005. View at Google Scholar · View at Scopus
  52. M. Kolehmainen, T. Salopuro, and T. Salopuro, “Weight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study,” International Journal of Obesity, vol. 32, no. 2, pp. 292–303, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. Taylor, “Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause,” Diabetologia, vol. 51, no. 10, pp. 1781–1789, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. G. Leichman, E. B. Wilson, and E. B. Wilson, “Dramatic reversal of derangements in muscle metabolism and left ventricular function after bariatric surgery,” American Journal of Medicine, vol. 121, no. 11, pp. 966–973, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. A. V. Greco, G. Mingrone, and G. Mingrone, “Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion,” Diabetes, vol. 51, no. 1, pp. 144–151, 2002. View at Google Scholar · View at Scopus
  56. G. F. Adami, R. C. Parodi, F. Papadia, G. Marinari, G. Camerini, R. Corvisieri, and N. Scopinaro, “Magnetic resonance spectroscopy facilitates assessment of intramyocellular lipid changes: a preliminary short-term study following biliopancreatic diversion,” Obesity Surgery, vol. 15, no. 9, pp. 1233–1237, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. L. Johansson, M. Roos, and M. Roos, “Lipid mobilization following Roux-en-Y gastric bypass examined by magnetic resonance imaging and spectroscopy,” Obesity Surgery, vol. 18, no. 10, pp. 1297–1304, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. M. Muoio and C. B. Newgard, “Obesity-related derangements in metabolic regulation,” Annual Review of Biochemistry, vol. 75, pp. 367–401, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. S. Shalhub, A. Parsee, and A. Parsee, “The importance of routine liver biopsy in diagnosing nonalcoholic steatohepatitis in bariatric patients,” Obesity Surgery, vol. 14, no. 1, pp. 54–59, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. L. A. Adams, J. F. Lymp, J. St. Sauver, S. O. Sanderson, K. D. Lindor, A. Feldstein, and P. Angulo, “The natural history of nonalcoholic fatty liver disease: a population-based cohort study,” Gastroenterology, vol. 129, no. 1, pp. 113–121, 2005. View at Publisher · View at Google Scholar
  61. E. C. Verna and P. D. Berk, “Role of fatty acids in the pathogenesis of obesity and fatty liver: impact of bariatric surgery,” Seminars in Liver Disease, vol. 28, no. 4, pp. 407–426, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. A. R. Moschen, C. Molnar, and C. Molnar, “Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression,” Journal of Hepatology, vol. 51, no. 4, pp. 765–777, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. L. N. Bell, C. J. Temm, and C. J. Temm, “Bariatric surgery-induced weight loss reduces hepatic lipid peroxidation levels and affects hepatic cytochrome P-450 protein content,” Annals of Surgery, vol. 251, no. 6, pp. 1041–1048, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. N. C. Chavez-Tapia, F. I. Tellez-Avila, T. Barrientos-Gutierrez, N. Mendez-Sanchez, J. Lizardi-Cervera, and M. Uribe, “Bariatric surgery for non-alcoholic steatohepatitis in obese patients,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD007340, 2010. View at Google Scholar · View at Scopus
  65. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Boushel, E. Gnaiger, P. Schjerling, M. Skovbro, R. Kraunsøe, and F. Dela, “Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle,” Diabetologia, vol. 50, no. 4, pp. 790–796, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. D. E. Kelley, J. He, E. V. Menshikova, and V. B. Ritov, “Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 2944–2950, 2002. View at Google Scholar · View at Scopus
  68. J. O. Holloszy, “Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance,” American Journal of Clinical Nutrition, vol. 89, no. 1, pp. 463S–466S, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. M. A. Abdul-Ghani and R. A. DeFronzo, “Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus,” Current Diabetes Reports, vol. 8, no. 3, pp. 173–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Szendroedi and M. Roden, “Mitochondrial fitness and insulin sensitivity in humans,” Diabetologia, vol. 51, no. 12, pp. 2155–2167, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. I. Pagel-Langenickel, J. Bao, L. Pang, and M. N. Sack, “The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance,” Endocrine Reviews, vol. 31, no. 1, pp. 25–51, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. K. F. Petersen, D. Befroy, and D. Befroy, “Mitochondrial dysfunction in the elderly: possible role in insulin resistance,” Science, vol. 300, no. 5622, pp. 1140–1142, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. M. Mogensen, K. Sahlin, M. Fernström, D. Glintborg, B. F. Vind, H. Beck-Nielsen, and K. Højlund, “Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes,” Diabetes, vol. 56, no. 6, pp. 1592–1599, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. V. B. Ritov, E. V. Menshikova, J. He, R. E. Ferrell, B. H. Goodpaster, and D. E. Kelley, “Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes,” Diabetes, vol. 54, no. 1, pp. 8–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. K. S. Nair, M. L. Bigelow, and M. L. Bigelow, “Asian indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance,” Diabetes, vol. 57, no. 5, pp. 1166–1175, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. H. M. de Feyter, N. M. A. van den Broek, S. F. E. Praet, K. Nicolay, L. J. C. van Loon, and J. J. Prompers, “Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction,” European Journal of Endocrinology, vol. 158, no. 5, pp. 643–653, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. O. Shaham, RU. Wei, and RU. Wei, “Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity,” Molecular Systems Biology, vol. 4, article 214, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. C. S. Stump, K. R. Short, M. L. Bigelow, J. M. Schimke, and K. S. Nair, “Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7996–8001, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. V. K. Mootha, C. M. Lindgren, and C. M. Lindgren, “PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes,” Nature Genetics, vol. 34, no. 3, pp. 267–273, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. E. Patti, A. J. Butte, and A. J. Butte, “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8466–8471, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. G. P. Holloway, C. G. R. Perry, A. B. Thrush, G. J. F. Heigenhauser, D. J. Dyck, A. Bonen, and L. L. Spriet, “PGC-1α's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1α and PGC-1β protein,” American Journal of Physiology, vol. 294, no. 6, pp. E1060–E1069, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. D. Bach, D. Naon, and D. Naon, “Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor α and interleukin-6,” Diabetes, vol. 54, no. 9, pp. 2685–2693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Bach, S. Pich, and S. Pich, “Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17190–17197, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. K. H. Chen, X. Guo, and X. Guo, “Dysregulation of HSG triggers vascular proliferative disorders,” Nature Cell Biology, vol. 6, no. 9, pp. 872–883, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. O. M. de Brito and L. Scorrano, “Mitofusin 2 tethers endoplasmic reticulum to mitochondria,” Nature, vol. 456, no. 7222, pp. 605–610, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. M. I. Hernández-Alvarez, C. Chiellini, and C. Chiellini, “Genes involved in mitochondrial biogenesis/function are induced in response to bilio-pancreatic diversion in morbidly obese individuals with normal glucose tolerance but not in type 2 diabetic patients,” Diabetologia, vol. 52, no. 8, pp. 1618–1627, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. I. Dahlman, M. Forsgren, and M. Forsgren, “Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α,” Diabetes, vol. 55, no. 6, pp. 1792–1799, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. Y. Xu, K. Ohinata, and K. Ohinata, “Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss,” Journal of Surgical Research, vol. 107, no. 1, pp. 56–63, 2002. View at Google Scholar · View at Scopus
  89. H. Kirchner, A. Guijarro, and M. M. Meguid, “Is a model useful in exploring the catabolic mechanisms of weight loss after gastric bypass in humans?” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 4, pp. 463–474, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. E. Nadreau, E. D. Baraboi, and E. D. Baraboi, “Effects of the biliopancreatic diversion on energy balance in the rat,” International Journal of Obesity, vol. 30, no. 3, pp. 419–429, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus