Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 471584, 10 pages
http://dx.doi.org/10.1155/2011/471584
Review Article

The Role of Testosterone in the Etiology and Treatment of Obesity, the Metabolic Syndrome, and Diabetes Mellitus Type 2

1Bayer Schering Pharma AG, Scientific Affairs Men's Healthcare, D-13342 Berlin, Germany
2Gulf Medical University School of Medicine, Ajman, UAE
3Endocrinology, VUmc, Amsterdam, The Netherlands

Received 22 March 2010; Accepted 6 July 2010

Academic Editor: A. Halpern

Copyright © 2011 Farid Saad and Louis J. Gooren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” JAMA, vol. 295, no. 13, pp. 1549–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Janssen and A. E. Mark, “Elevated body mass index and mortality risk in the elderly,” Obesity Reviews, vol. 8, no. 1, pp. 41–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Blouin, A. Boivin, and A. Tchernof, “Androgens and body fat distribution,” Journal of Steroid Biochemistry and Molecular Biology, vol. 108, no. 3–5, pp. 272–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. K. Wells, “Sexual dimorphism of body composition,” Best Practice and Research, vol. 21, no. 3, pp. 415–430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. L. A. Loomba-Albrecht and D. M. Styne, “Effect of puberty on body composition,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 16, no. 1, pp. 10–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. W. Taylor, A. M. Grant, S. M. Williams, and A. Goulding, “Sex differences in regional body fat distribution from pre-to postpuberty,” Obesity, vol. 18, no. 7, pp. 1410–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. N. Roemmich, P. A. Clark, V. Mai et al., “Alterations in growth and body composition during puberty: III. Influence of maturation, gender, body composition, fat distribution, aerobic fitness, and energy expenditure on nocturnal growth hormone release,” Journal of Clinical Endocrinology and Metabolism, vol. 83, no. 5, pp. 1440–1447, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. J. O'Connell, L. Lynch, J. Cawood et al., “The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity,” PLoS One, vol. 5, no. 4, Article ID e9997, 2010. View at Publisher · View at Google Scholar
  9. P. Björntorp, “Adipose tissue distribution and function,” International Journal of Obesity, vol. 15, supplement 2, pp. 67–81, 1991. View at Google Scholar · View at Scopus
  10. J. S. Mayes and G. H. Watson, “Direct effects of sex steroid hormones on adipose tissues and obesity,” Obesity Reviews, vol. 5, no. 4, pp. 197–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Jensen, “Role of body fat distribution and the metabolic complications of obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, supplement 1, pp. S57–S63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Katznelson, D. I. Rosenthal, M. S. Rosol et al., “Using quantitative CT to assess adipose distribution in adult men with acquired hypogonadism,” AJR, vol. 170, no. 2, pp. 423–427, 1998. View at Google Scholar · View at Scopus
  13. L. Katznelson, J. S. Finkelstein, D. A. Schoenfeld, D. I. Rosenthal, E. J. Anderson, and A. Klibanski, “Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 12, pp. 4358–4365, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Smith, “Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer,” Urology, vol. 63, no. 4, pp. 742–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Smith, H. Lee, and D. M. Nathan, “Insulin sensitivity during combined androgen blockade for prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 4, pp. 1305–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Basaria, D. C. Muller, M. A. Carducci, J. Egan, and A. S. Dobs, “Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy,” Cancer, vol. 106, no. 3, pp. 581–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. H. Derweesh, C. J. DiBlasio, M. C. Kincade et al., “Risk of new-onset diabetes mellitus and worsening glycaemic variables for established diabetes in men undergoing androgen-deprivation therapy for prostate cancer,” BJU International, vol. 100, no. 5, pp. 1060–1065, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. E. Laaksonen, L. Niskanen, K. Punnonen et al., “Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men,” Diabetes Care, vol. 27, no. 5, pp. 1036–1041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Kupelian, S. T. Page, A. B. Araujo, T. G. Travison, W. J. Bremner, and J. B. McKinlay, “Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 3, pp. 843–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Rosmond, S. Wallerius, P. Wanger, L. Martin, G. Holm, and P. Björntorp, “A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern,” Journal of Internal Medicine, vol. 254, no. 4, pp. 386–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Zmuda, J. A. Cauley, A. Kriska, N. W. Glynn, J. P. Gutai, and L. H. Kuller, “Longitudinal relation between endogenous testosterone and cardiovascular disease risk factors in middle-aged men: a 13-year follow-up of former multiple risk factor intervention trial participants,” American Journal of Epidemiology, vol. 146, no. 8, pp. 609–617, 1997. View at Google Scholar · View at Scopus
  22. S. Basaria, D. C. Muller, M. A. Carducci, J. Egan, and A. S. Dobs, “Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy,” Cancer, vol. 106, no. 3, pp. 581–588, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. W. B. Kannel, L. A. Cupples, R. Ramaswami, J. Stokes III, B. E. Kreger, and M. Higgins, “Regional obesity and risk of cardiovascular disease; the Framingham Study,” Journal of Clinical Epidemiology, vol. 44, no. 2, pp. 183–190, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Björntorp and R. Rosmond, “The metabolic syndrome—a neuroendocrine disorder?” British Journal of Nutrition, vol. 83, supplement 1, pp. S49–S57, 2000. View at Google Scholar · View at Scopus
  25. R. O. B. Gans, “The metabolic syndrome, depression, and cardiovascular disease: interrelated conditions that share pathophysiologic mechanisms,” Medical Clinics of North America, vol. 90, no. 4, pp. 573–591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Grundy, H. B. Brewer Jr., J. I. Cleeman, S. C. Smith Jr., and C. Lenfant, “Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 2, pp. e13–e18, 2004. View at Google Scholar · View at Scopus
  27. M. C. Carr and J. D. Brunzell, “Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2601–2607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. K. Simmons, K. G. Alberti, and E. A Gale, “The metabolic syndrome: useful concept or clinical tool? Report of a WHO Expert Consultation,” Diabetologia, vol. 53, no. 4, pp. 600–605, 2009. View at Google Scholar
  29. J. I. Cleeman, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” JAMA, vol. 285, no. 19, pp. 2486–2497, 2001. View at Google Scholar · View at Scopus
  30. H.-M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” JAMA, vol. 288, no. 21, pp. 2709–2716, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. S. Ford, “Prevalence of the metabolic syndrome defined by the international diabetes federation among adults in the U.S,” Diabetes Care, vol. 28, no. 11, pp. 2745–2749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Rodriguez, D. C. Muller, E. J. Metter et al., “Aging, androgens, and the metabolic syndrome in a longitudinal study of aging,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3568–3572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. A. Mohr, S. Bhasin, C. L. Link, A. B. O'Donnell, and J. B. McKinlay, “The effect of changes in adiposity on testosterone levels in older men: longitudinal results from the Massachusetts male aging study,” European Journal of Endocrinology, vol. 155, no. 3, pp. 443–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. A. Kaplan, A. G. Meehan, and A. Shah, “The age related decrease in testosterone is significantly exacerbated in obese men with the metabolic syndrome. What are the Implications for the relatively high incidence of erectile dysfunction observed in these men?” The Journal of Urology, vol. 176, no. 4, pp. 1524–1528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. Allan, B. J. Strauss, H. G. Burger, E. A. Forbes, and R. I. McLachlan, “The association between obesity and the diagnosis of androgen deficiency in symptomatic ageing men,” Medical Journal of Australia, vol. 185, no. 8, pp. 424–427, 2006. View at Google Scholar · View at Scopus
  37. R. R. Kalyani and A. S. Dobs, “Androgen deficiency, diabetes, and the metabolic syndrome in men,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 14, no. 3, pp. 226–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. A. Allan, B. J. G. Strauss, and R. I. McLachlan, “Body composition, metabolic syndrome and testosterone in ageing men,” International Journal of Impotence Research, vol. 19, no. 5, pp. 448–457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Saad, “The role of testosterone in type 2 diabetes and metabolic syndrome in men,” Arq Bras Endocrinol Metabol, vol. 53, no. 8, pp. 901–907, 2009. View at Google Scholar
  40. J. Svartberg, D. Von Mühlen, J. Sundsfjord, and R. Jorde, “Waist circumference and testosterone levels in community dwelling men,” European Journal of Epidemiology, vol. 19, no. 7, pp. 657–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Kupelian, F. J. Hayes, C. L. Link, R. Rosen, and J. B. McKinlay, “Inverse association of testosterone and the metabolic syndrome in men is consistent across race and ethnic groups,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3403–3410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Saad and L. Gooren, “The role of testosterone in the metabolic syndrome: a review,” Journal of Steroid Biochemistry and Molecular Biology, vol. 114, no. 1-2, pp. 40–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. D. Stanworth and T. H. Jones, “Testosterone in obesity, metabolic syndrome and type 2 diabetes,” Frontiers of Hormone Research, vol. 37, pp. 74–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. R. D. Stanworth, D. Kapoor, K. S. Channer, and T. H. Jones, “Statin therapy is associated with lower total but not bioavailable or free testosterone in men with type 2 diabetes,” Diabetes Care, vol. 32, no. 4, pp. 541–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Stamler, R. Stamler, W. F. Riedlinger, G. Algera, and R. H. Roberts, “Hypertension screening of 1 million Americans. Community Hypertension Evaluation Clinic (CHEC) program, 1973 through 1975,” JAMA, vol. 235, no. 21, pp. 2299–2306, 1976. View at Publisher · View at Google Scholar · View at Scopus
  46. E. L. Ding, Y. Song, V. S. Malik, and S. Liu, “Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis,” JAMA, vol. 295, no. 11, pp. 1288–1299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Traish, F. Saad, and A. Guay, “The dark side of testosterone deficiency: II. type 2 diabetes and insulin resistance,” Journal of Andrology, vol. 30, no. 1, pp. 23–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. B. B. Yeap, Z. Hyde, O. P. Almeida et al., “Lower testosterone levels predict incident stroke and transient ischemic attack in older men,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 7, pp. 2353–2359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. K. Stellato, H. A. Feldman, O. Hamdy, E. S. Horton, and J. B. Mckinlay, “Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts Male Aging Study,” Diabetes Care, vol. 23, no. 4, pp. 490–494, 2000. View at Google Scholar · View at Scopus
  50. S. M. Haffner, J. Shaten, M. P. Stern, G. D. Smith, and L. Kuller, “Low levels of sex hormone-binding globulin and testosterone predict the development of non-insulin-dependent diabetes mellitus in men,” American Journal of Epidemiology, vol. 143, no. 9, pp. 889–897, 1996. View at Google Scholar · View at Scopus
  51. J.-Y. Oh, E. Barrett-Connor, N. M. Wedick, and D. L. Wingard, “Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo Study,” Diabetes Care, vol. 25, no. 1, pp. 55–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Haring, H. Völzke, S. B. Felix et al., “Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania,” Diabetes, vol. 58, no. 9, pp. 2027–2031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Selvin, M. Feinleib, L. Zhang et al., “Androgens and diabetes in men: results from the third National Health and Nutrition Examination Survey (NHANES III),” Diabetes Care, vol. 30, no. 2, pp. 234–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. B. B. Yeap, S. A. P. Chubb, Z. Hyde et al., “Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: the health in men study,” European Journal of Endocrinology, vol. 161, no. 4, pp. 591–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. M. Traish, F. Saad, R. J. Feeley, and A. Guay, “The dark side of testosterone deficiency: III. Cardiovascular disease,” Journal of Andrology, vol. 30, no. 5, pp. 477–494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Chandel, S. Dhindsa, S. Topiwala, A. Chaudhuri, and P. Dandona, “Testosterone concentration in young patients with diabetes,” Diabetes Care, vol. 31, no. 10, pp. 2013–2017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. R. D. Stanworth, D. Kapoor, K. S. Channer, and T. H. Jones, “Androgen receptor CAG repeat polymorphism is associated with serum testosterone levels, obesity and serum leptin in men with type 2 diabetes,” European Journal of Endocrinology, vol. 159, no. 6, pp. 739–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Kaufman and A. Vermeulen, “The decline of androgen levels in elderly men and its clinical and therapeutic implications,” Endocrine Reviews, vol. 26, no. 6, pp. 833–876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Lima, H. Cavaliere, M. Knobel, A. Halpern, and G. Medeiros-Neto, “Decreased androgen levels in massively obese men may be associated with impaired function of the gonadostat,” International Journal of Obesity, vol. 24, no. 11, pp. 1433–1437, 2000. View at Google Scholar · View at Scopus
  61. N. Pitteloud, M. Hardin, A. A. Dwyer et al., “Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2636–2641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. A. M. Isidori, M. Caprio, F. Strollo et al., “Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3673–3680, 1999. View at Google Scholar · View at Scopus
  63. N. P. Goncharov, G. V. Katsya, N. A. Chagina, and L. J. Gooren, “Testosterone and obesity in men under the age of 40 years,” Andrologia, vol. 41, no. 2, pp. 76–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. M. Mah and G. A. Wittert, “Obesity and testicular function,” Molecular and Cellular Endocrinology, vol. 316, no. 2, pp. 180–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Zitzmann, “Testosterone deficiency, insulin resistance and the metabolic syndrome,” Nature Reviews Endocrinology, vol. 5, no. 12, pp. 673–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. E. Laaksonen, L. Niskanen, K. Punnonen et al., “Sex hormones, inflammation and the metabolic syndrome: a population-based study,” European Journal of Endocrinology, vol. 149, no. 6, pp. 601–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. R. Smith, H. Lee, and D. M. Nathan, “Insulin sensitivity during combined androgen blockade for prostate cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 4, pp. 1305–1308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Braga-Basaria, A. S. Dobs, D. C. Muller et al., “Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy,” Journal of Clinical Oncology, vol. 24, no. 24, pp. 3979–3983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. A. Yialamas, A. A. Dwyer, E. Hanley, H. Lee, N. Pitteloud, and F. J. Hayes, “Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 11, pp. 4254–4259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Haidar, A. Yassin, F. Saad, and R. Shabsigh, “Effects of androgen deprivation on glycaemic control and on cardiovascular biochemical risk factors in men with advanced prostate cancer with diabetes,” Aging Male, vol. 10, no. 4, pp. 189–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. F. C. W. Wu, A. Tajar, S. R. Pye et al., “Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European male aging study,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2737–2745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. G. Travison, A. B. Araujo, V. Kupelian, A. B. O'Donnell, and J. B. McKinlay, “The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 549–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. F. G. Cicero, G. Derosa, M. Bove, V. Di Gregori, A. V. Gaddi, and C. Borghi, “Effect of a sequential training programme on inflammatory, prothrombotic and vascular remodelling biomarkers in hypertensive overweight patients with or without metabolic syndrome,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 16, no. 6, pp. 698–704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Esposito, R. Marfella, M. Ciotola et al., “Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial,” JAMA, vol. 292, no. 12, pp. 1440–1446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. A. E. Heufelder, F. Saad, M. C. Bunck, and L. Gooren, “Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone,” Journal of Andrology, vol. 30, no. 6, pp. 726–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Marin, L. Lönn, B. Andersson et al., “Assimilation of triglycerides in subcutaneous and intraabdominal adipose tissues in vivo in men: effects of testosterone,” Journal of Clinical Endocrinology and Metabolism, vol. 81, no. 3, pp. 1018–1022, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Singh, J. N. Artaza, W. E. Taylor et al., “Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors,” Endocrinology, vol. 147, no. 1, pp. 141–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Svartberg, I. Agledahl, Y. Figenschau, T. Sildnes, K. Waterloo, and R. Jorde, “Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip,” International Journal of Impotence Research, vol. 20, no. 4, pp. 378–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A. M. Isidori, E. Giannetta, E. A. Greco et al., “Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis,” Clinical Endocrinology, vol. 63, no. 3, pp. 280–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. T. H. Jones and F. Saad, “The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process,” Atherosclerosis, vol. 207, no. 2, pp. 318–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Allan, B. J. G. Strauss, H. G. Burger, E. A. Forbes, and R. I. McLachlan, “Testosterone therapy prevents gain in visceral adipose tissue and loss of skeletal muscle in nonobese aging men,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 1, pp. 139–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Munzer, S. M. Harman, P. Hees et al., “Effects of GH and/or sex steroid administration on abdominal subcutaneous and visceral fat in healthy aged women and men,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3604–3610, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. E. T. Schroeder, L. Zheng, M. D. Ong et al., “Effects of androgen therapy on adipose tissue and metabolism in older men,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 10, pp. 4863–4872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Haider, L. J.G. Gooren, P. Padungtod, and F. Saad, “Improvement of the metabolic syndrome and of non-alcoholic liver steatosis upon treatment of hypogonadal elderly men with parenteral testosterone undecanoate,” Experimental and Clinical Endocrinology and Diabetes, vol. 118, no. 3, pp. 167–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Pitteloud, V. K. Mootha, A. A. Dwyer et al., “Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men,” Diabetes Care, vol. 28, no. 7, pp. 1636–1642, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Boyanov, Z. Boneva, and V. G. Christov, “Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency,” Aging Male, vol. 6, no. 1, pp. 1–7, 2003. View at Google Scholar · View at Scopus
  87. D. G. Moon, M. G. Park, S. W. Lee et al., “The efficacy and safety of testosterone undecanoate (Nebido®) in testosterone deficiency syndrome in Korean: a multicenter prospective study,” Journal of Sexual Medicine, vol. 7, no. 6, pp. 2253–2260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J. J. Corrales, M. Almeida, R. Burgo, M. T. Mories, J. M. Miralles, and A. Orfao, “Androgen-replacement therapy depresses the ex vivo production of inflammatory cytokines by circulating antigen-presenting cells in aging type-2 diabetic men and partial androgen deficiency,” Journal of Endocrinology, vol. 189, no. 3, pp. 595–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. C.-H. Lee, S.-W. Kuo, Y.-J. Hung et al., “The effect of testosterone supplement on insulin sensitivity, glucose effectiveness, and acute insulin response after glucose load in male type 2 diabetics,” Endocrine Research, vol. 31, no. 2, pp. 139–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. G. A. Laughlin, E. Barrett-Connor, and J. Bergstrom, “Low serum testosterone and mortality in older men,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 1, pp. 68–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. M. Shores, V. M. Moceri, D. A. Gruenewald, K. I. Brodkin, A. M. Matsumoto, and D. R. Kivlahan, “Low testosterone is associated with decreased function and increased mortality risk: a preliminary study of men in a geriatric rehabilitation unit,” Journal of the American Geriatrics Society, vol. 52, no. 12, pp. 2077–2081, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. M. M. Shores, A. M. Matsumoto, K. L. Sloan, and D. R. Kivlahan, “Low serum testosterone and mortality in male veterans,” Archives of Internal Medicine, vol. 166, no. 15, pp. 1660–1665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. K.-T. Khaw, M. Dowsett, E. Folkerd et al., “Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: european prospective investigation into cancer in Norfolk (EPIC-Norfolk) prospective population study,” Circulation, vol. 116, no. 23, pp. 2694–2701, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Maggio, F. Lauretani, G. P. Ceda et al., “Relationship between low levels of anabolic hormones and 6-year mortality in older men: the aging in the chianti area (InCHIANTI) study,” Archives of Internal Medicine, vol. 167, no. 20, pp. 2249–2254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Muller, I. den Tonkelaar, J. H. H. Thijssen, D. E. Grobbee, and Y. T. van der Schouw, “Endogenous sex hormones in men aged 40–80 years,” European Journal of Endocrinology, vol. 149, no. 6, pp. 583–589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Mulligan, M. F. Frick, Q. C. Zuraw, A. Stemhagen, and C. McWhirter, “Prevalence of hypogonadism in males aged at least 45 years: the HIM study,” International Journal of Clinical Practice, vol. 60, no. 7, pp. 762–769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Vermeulen, “Androgen replacement therapy in the aging male—a critical evaluation,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 6, pp. 2380–2390, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Nieschlag, R. Swerdloff, H. M. Behre et al., “Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations,” European Urology, vol. 48, no. 1, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Vermeulen, L. Verdonck, and J. M. Kaufman, “A critical evaluation of simple methods for the estimation of free testosterone in serum,” Journal of Clinical Endocrinology and Metabolism, vol. 84, no. 10, pp. 3666–3672, 1999. View at Google Scholar · View at Scopus
  100. R. Sodergard, T. Backstrom, V. Shanbhag, and H. Carstensen, “Calculation of free and bound fractions of testosterone and estradiol-17β to human plasma proteins at body temperature,” Journal of Steroid Biochemistry, vol. 16, no. 6, pp. 801–810, 1982. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Schultheiss, S. Machtens, and U. Jonas, “Testosterone therapy in the ageing male: what about the prostate?” Andrologia, vol. 36, no. 6, pp. 355–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Morales, “Testosterone treatment for the aging man: the controversy,” Current Urology Reports, vol. 5, no. 6, pp. 472–477, 2004. View at Google Scholar · View at Scopus
  103. O. M. Calof, A. B. Singh, M. L. Lee et al., “Adverse events associated with testosterone replacement in middle-aged and older men: a meta-analysis of randomized, placebo-controlled trials,” Journals of Gerontology, vol. 60, no. 11, pp. 1451–1457, 2005. View at Google Scholar · View at Scopus
  104. D. W. Ebling, J. Ruffer, R. Whittington et al., “Development of prostate cancer after pituitary dysfunction: a report of 8 patients,” Urology, vol. 49, no. 4, pp. 564–568, 1997. View at Publisher · View at Google Scholar · View at Scopus
  105. K. R. Loughlin and J. P. Richie, “Prostate cancer after exogenous testosterone treatment for impotence,” The Journal of Urology, vol. 157, no. 5, p. 1845, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. M. J. Curran and W. Bihrle III, “Dramatic rise in prostate-specific antigen after androgen replacement in a hypogonadal man with occult adenocarcinoma of the prostate,” Urology, vol. 53, no. 2, pp. 423–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  107. E. L. Rhoden and A. Morgentaler, “Risks of testosterone-replacement therapy and recommendations for monitoring,” The New England Journal of Medicine, vol. 350, no. 5, pp. 482–492, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Sengupta, H. J. Duncan, R. J. Macgregor, and J. M. Russell, “The development of prostate cancer despite late onset androgen deficiency,” International Journal of Urology, vol. 12, no. 9, pp. 847–848, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. H. B. Carter, J. D. Pearson, E. J. Metter et al., “Longitudinal evaluation of serum androgen levels in men with and without prostate cancer,” Prostate, vol. 27, no. 1, pp. 25–31, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. A. W. Hsing, “Hormones and prostate cancer: what's next?” Epidemiologic Reviews, vol. 23, no. 1, pp. 42–58, 2001. View at Google Scholar · View at Scopus
  111. J. S. Tenover, “Effects of testosterone supplementation in the aging male,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 4, pp. 1092–1098, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. L. S. Marks, N. A. Mazer, E. Mostaghel et al., “Effect of testosterone replacement therapy on prostate tissue in men with late-onset hypogonadism: a randomized controlled trial,” JAMA, vol. 296, no. 19, pp. 2351–2361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Morgentaler, “Testosterone replacement therapy and prostate cancer,” Urologic Clinics of North America, vol. 34, no. 4, pp. 555–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Yassin and F. Saad, “Testosterone treatment in hypogonadal patients does not cause higher incidence of prostate cancer,” The Journal of Urology, vol. 179, no. 4, p. 301, 2008. View at Google Scholar
  115. A. A. Yassin and F. Saad, “Improvement of sexual function in men with late-onset hypogonadism treated with testosterone only,” Journal of Sexual Medicine, vol. 4, no. 2, pp. 497–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. R. M. Coward, J. Simhan, and C. C. Carson III, “Prostate-specific antigen changes and prostate cancer in hypogonadal men treated with testosterone replacement therapy,” BJU International, vol. 103, no. 9, pp. 1179–1183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. R. L. Leibowitz, T. B. Dorff, S. Tucker, J. Symanowski, and N. J. Vogelzang, “Testosterone replacement in prostate cancer survivors with hypogonadal symptoms,” BJU International, vol. 105, no. 10, pp. 1397–1401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. E. L. Rhoden and M. A. Averbeck, “Testosterone therapy and prostate carcinoma,” Current Urology Reports, vol. 10, no. 6, pp. 453–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Isbarn, J. H. Pinthus, L. S. Marks et al., “Testosterone and prostate cancer: revisiting old paradigms,” European Urology, vol. 56, no. 1, pp. 48–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Morgentaler, “Rapidly shifting concepts regarding androgens and prostate cancer,” The Scientific World Journal, vol. 9, pp. 685–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Bhasin, G. R. Cunningham, F. J. Hayes et al., “Testosterone therapy in adult men with androgen deficiency syndromes: an endocrine society clinical practice guideline,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 1995–2010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Wang, E. Nieschlag, R. Swerdloff et al., “Investigation, treatment and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA and ASA recommendations,” European Journal of Endocrinology, vol. 159, no. 5, pp. 507–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. J. M. Kaufman and R. J. Graydon, “Androgen replacement after curative radical prostatectomy for prostate cancer in hypogonadal men,” The Journal of Urology, vol. 172, no. 3, pp. 920–922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. P. K. Agarwal and M. G. Oefelein, “Testosterone replacement therapy after primary treatment for prostate cancer,” The Journal of Urology, vol. 173, no. 2, pp. 533–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. M. F. Sarosdy, “Testosterone replacement for hypogonadism after treatment of early prostate cancer with brachytherapy,” Cancer, vol. 109, no. 3, pp. 536–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. C. Wang, E. Nieschlag, R. Swerdloff et al., “Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, EAU, EAA, and ASA recommendations,” European Urology, vol. 55, no. 1, pp. 121–130, 2009. View at Publisher · View at Google Scholar · View at Scopus