Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011 (2011), Article ID 475786, 10 pages
http://dx.doi.org/10.1155/2011/475786
Research Article

Oral Administration of Semicarbazide Limits Weight Gain together with Inhibition of Fat Deposition and of Primary Amine Oxidase Activity in Adipose Tissue

1Institut National de la Santé et de la Recherche Médicale, INSERM U1048, Equipe 3, 12MC, IFR 150, Bat. L4, CHU Rangueil, BP 84225, 31432 Toulouse Cedex 4, France
2Université Paul Sabatier, 12MC, Centre Hospitalier Universitaire de Rangueil, 31432 Toulouse, France

Received 28 June 2010; Accepted 22 December 2010

Academic Editor: A. Halpern

Copyright © 2011 Josep Mercader et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An enzyme hitherto named semicarbazide-sensitive amine oxidase (SSAO), involved in the oxidation of primary amines, is abundantly expressed in adipocytes. Although SSAO physiological functions remain unclear, several molecules inhibiting its activity have been described to limit fat accumulation in preadipocyte cultures or to reduce body weight gain in obese rodents. Here, we studied whether oral administration of semicarbazide, a prototypical SSAO inhibitor, limits fat deposition in mice. Prolonged treatment with semicarbazide at 0.125% in drinking water limited food and water consumption, hampered weight gain, and deeply impaired fat deposition. The adiposomatic index was reduced by 31%, while body mass was reduced by 15%. Such treatment completely inhibited SSAO, but did not alter MAO activity in white adipose tissue. Consequently, the insulin-like action of the SSAO substrate benzylamine on glucose transport was abolished in adipocytes from semicarbazide-drinking mice, while their insulin sensitivity was not altered. Although semicarbazide is currently considered as a food contaminant with deleterious effects, the SSAO inhibition it induces appears as a novel concept to modulate adipose tissue development, which is promising for antiobesity drug discovery.