Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2011, Article ID 636181, 13 pages
http://dx.doi.org/10.1155/2011/636181
Review Article

Present and Future: Pharmacologic Treatment of Obesity

1Department of Endocrinology, Bronx-Lebanon Hospital Center, Bronx, NY 10457, USA
2Diabetes Center, Hadassah-Hebrew University Medical School, Ein karem, Jerusalem 12000, Israel

Received 7 June 2010; Accepted 9 December 2010

Academic Editor: L. Van Gaal

Copyright © 2011 Mariela Glandt and Itamar Raz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. http://www.who.int.elibrary.einstein.yu.edu/mediacentre/factsheets/fs311/en/index.htm.
  2. G. A. Bray, The Battle of the Bulge, Dorrance, Pittsburgh, Pa, USA, 2007.
  3. J. Kaukua, T. Pekkarinen, T. Sane, and P. Mustajoki, “Health-related quality of life in obese outpatients losing weight with very-low-energy diet and behaviour modification: a 2-y follow-up study,” International Journal of Obesity, vol. 27, no. 9, pp. 1072–1080, 2003. View at Publisher · View at Google Scholar
  4. M. K. Hassan, A. V. Joshi, S. S. Madhavan, and M. M. Amonkar, “Obesity and health-related quality of life: a cross-sectional analysis of the US population,” International Journal of Obesity, vol. 27, no. 10, pp. 1227–1232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Galuska, J. C. Will, and M. K. Serdula, “Are health care professionals advising obese patients to lose weight?” Journal of the American Medical Association, vol. 282, no. 16, pp. 1576–1578, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. H. M. Connolly, J. L. Crary, M. D. McGoon et al., “Valvular heart disease associated with fenfluramine phentermine,” The New England Journal of Medicine, vol. 337, no. 9, pp. 581–588, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. W. N. Kernan, C. M. Viscoli, L. M. Brass et al., “Phenylpropanolamine and the risk of hemorrhagic stroke,” The New England Journal of Medicine, vol. 343, no. 25, pp. 1826–1832, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. K. Lee, E. B. Choi, and C. S. Park, “The current status and future perspectives of studies of cannabinoid receptor 1 antagonists as anti-obesity agents,” Current Topics in Medicinal Chemistry, vol. 9, no. 6, pp. 482–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. W. P. T. James, I. D. Caterson, W. Coutinho et al., “Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects,” The New England Journal of Medicine, vol. 363, no. 10, pp. 905–917, 2010. View at Publisher · View at Google Scholar
  10. V. Snow, P. Barry, N. Fitterman et al., “Pharmacologic and surgical management of obesity in primary care: a clinical practice guideline from the American College of Physicians,” Annals of Internal Medicine, vol. 142, no. 7, pp. 525–531, 2005. View at Google Scholar · View at Scopus
  11. Z. Li, M. Maglione, W. Tu et al., “Meta-analysis: pharmacologic treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 532–546, 2005. View at Google Scholar · View at Scopus
  12. M. A. Maggard, L. R. Shugarman, M. Suttorp et al., “Meta-analysis: surgical treatment of obesity,” Annals of Internal Medicine, vol. 142, no. 7, pp. 547–559, 2005. View at Google Scholar · View at Scopus
  13. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. The Evidence Report, NIH Publication No. 98-4083, NIH Publication, Bethesda, Md, USA, 1998.
  14. NIH conference, Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel.
  15. G. D. Foster, T. A. Wadden, R. A. Vogt, and G. Brewer, “What is a reasonable weight loss? Patients' expectations and evaluations of obesity treatment outcomes,” Journal of Consulting and Clinical Psychology, vol. 65, no. 1, pp. 79–85, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. T. A. Wadden, L. G. Womble, D. B. Sarwer, R. I. Berkowitz, V. L. Clark, and G. D. Foster, “Great expectations: “I'm losing 25% of my weight no matter what you say”,” Journal of Consulting and Clinical Psychology, vol. 71, no. 6, pp. 1084–1089, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Korner and L. J. Aronne, “Pharmacological approaches to weight reduction: therapeutic targets,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2616–2621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Blackburn, “Effect of degree of weight loss on health benefits,” Obesity Research, vol. 3, supplement 2, pp. 211s–216s, 1995. View at Google Scholar · View at Scopus
  19. S. Z. Yanovski, R. P. Bain, and D. F. Williamson, “Report of a national institutes of health-centers for disease control and prevention workshop on the feasibility of conducting a randomized clinical trial to estimate the long-term health effects of intentional weight loss in obese persons,” American Journal of Clinical Nutrition, vol. 69, no. 3, pp. 366–372, 1999. View at Google Scholar · View at Scopus
  20. B. S. Kanders, G. L. Blackburn, P. Lavin, and D. Norton, “Weight loss outcome and health benefits associated with the Optifast program in the treatment of obesity,” International Journal of Obesity, vol. 13, no. 2, supplement, pp. 131–134, 1989. View at Google Scholar · View at Scopus
  21. M. J. Follick, D. B. Abrams, and T. W. Smith, “Contrasting short- and long-term effects of weight loss on lipoprotein levels,” Archives of Internal Medicine, vol. 144, no. 8, pp. 1571–1574, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Douketis, C. Macie, L. Thabane, and D. F. Williamson, “Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice,” International Journal of Obesity, vol. 29, no. 10, pp. 1153–1167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. R. Rubin, S. A. Gaussoin, M. Peyrot et al., “Cardiovascular disease risk factors, depression symptoms and antidepressant medicine use in the Look AHEAD (Action for Health in Diabetes) clinical trial of weight loss in diabetes,” Diabetologia, vol. 53, no. 8, pp. 1581–1589, 2010. View at Publisher · View at Google Scholar
  24. R. L. Leibel, M. Rosenbaum, and J. Hirsch, “Changes in energy expenditure resulting from altered body weight,” The New England Journal of Medicine, vol. 332, no. 10, pp. 621–628, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. A. G. Dulloo and J. Jacquet, “Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores,” American Journal of Clinical Nutrition, vol. 68, no. 3, pp. 599–606, 1998. View at Google Scholar · View at Scopus
  26. S. Heshka, Y. M. Uih, J. Wang, P. Burt, and F. X. Pi-Sunyer, “Weight loss and change in resting metabolic rate,” American Journal of Clinical Nutrition, vol. 52, no. 6, pp. 981–986, 1990. View at Google Scholar · View at Scopus
  27. P. A. Kern, J. M. Ong, B. Saffari, and J. Carty, “The effects of weight loss on the activity and expression of adipose-tissue lipoprotein lipase in very obese humans,” The New England Journal of Medicine, vol. 322, no. 15, pp. 1053–1059, 1990. View at Google Scholar · View at Scopus
  28. J. Hauptman, C. Lucas, M. N. Boldrin, H. Collins, and K. R. Segal, “Orlistat in the long-term treatment of obesity in primary care settings,” Archives of Family Medicine, vol. 9, no. 2, pp. 160–167, 2000. View at Google Scholar · View at Scopus
  29. L. Sjostrom, A. Rissanen, and T. Anderson, “Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial,” The Lancet, vol. 352, p. 167, 1998. View at Google Scholar
  30. M. H. Davidson, J. Hauptman, M. DiGirolamo et al., “Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: a randomized controlled trial,” Journal of the American Medical Association, vol. 281, no. 3, pp. 235–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Torgerson, J. Hauptman, M. N. Boldrin, and L. Sjöström, “XENical in the Prevention of Diabetes in Obese Subjects (XENDOS) Study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients,” Diabetes Care, vol. 27, no. 1, pp. 155–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. E. Kelley, G. A. Bray, F. X. Pi-Sunyer et al., “Clinical efficacy of orlistat therapy in overweight and obese patients with insulin-treated type 2 diabetes: a 1-year randomized controlled trial,” Diabetes Care, vol. 25, no. 6, pp. 1033–1041, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Miles, L. Leiter, P. Hollander et al., “Effect of orlistat in overweight and obese patients with type 2 diabetes treated with metformin,” Diabetes Care, vol. 25, no. 7, pp. 1123–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Hollander, S. C. Elbein, I. B. Hirsch et al., “Role of orlistat in the treatment of obese patients with type 2 diabetes: a 1-year randomized double-blind study,” Diabetes Care, vol. 21, no. 8, pp. 1288–1294, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Tonstad, D. Pometta, D. W. Erkelens et al., “The effect of the gastrointestinal lipase inhibitor, orlistat, on serum lipids and lipoproteins in patients with primary hyperlipidaemia,” European Journal of Clinical Pharmacology, vol. 46, no. 5, pp. 405–410, 1994. View at Google Scholar · View at Scopus
  36. R. Padwal, S. K. Li, and D. C.W. Lau, “Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials,” International Journal of Obesity, vol. 27, no. 12, pp. 1437–1446, 2003. View at Publisher · View at Google Scholar
  37. G. A. Bray, G. L. Blackburn, J. M. Ferguson et al., “Sibutramine produces dose-related weight loss,” Obesity Research, vol. 7, no. 2, pp. 189–198, 1999. View at Google Scholar · View at Scopus
  38. M. Apfelbaum, P. Vague, O. Ziegler, C. Hanotin, F. Thomas, and E. Leutenegger, “Long-term maintenance of weight loss after a very-low-calorie diet: a randomized blinded trial of the efficacy and tolerability of sibutramine,” American Journal of Medicine, vol. 106, no. 2, pp. 179–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. W. P.T. James, A. Astrup, N. Finer et al., “Effect of sibutramine on weight maintenance after weight loss: a randomised trial,” The Lancet, vol. 356, supplement, pp. 2119–2125, 2000. View at Publisher · View at Google Scholar
  40. T. A. Wadden, R. I. Berkowitz, L. G. Womble et al., “Randomized trial of lifestyle modification and pharmacotherapy for obesity,” The New England Journal of Medicine, vol. 353, no. 20, pp. 2111–2120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. McNulty, E. Ur, and G. Williams, “A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin,” Diabetes Care, vol. 26, no. 1, pp. 125–131, 2003. View at Publisher · View at Google Scholar
  42. K. Fujioka, T. B. Seaton, E. Rowe et al., “Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus,” Diabetes, Obesity and Metabolism, vol. 2, no. 3, pp. 175–187, 2000. View at Publisher · View at Google Scholar
  43. S. L. Norris, X. Zhang, A. Avenell et al., “Efficacy of pharmacotherapy for weight loss in adults with type 2 diabetes mellitus: a meta-analysis,” Archives of Internal Medicine, vol. 164, no. 13, pp. 1395–1404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Vettor, R. Serra, R. Fabris, C. Pagano, and G. Federspil, “Effect of sibutramine on weight management and metabolic control in type 2 diabetes: a meta-analysis of clinical studies,” Diabetes Care, vol. 28, no. 4, pp. 942–949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. H. Kim, Y. M. Lee, S. H. Jee et al., “Effect of sibutramine on weight loss and blood pressure: a meta-analysis of controlled trials,” Obesity Research, vol. 11, no. 9, pp. 1116–1123, 2003. View at Google Scholar · View at Scopus
  46. K. Johansson, J. Sundström, K. Neovius, S. Rössner, and M. Neovius, “Long-term changes in blood pressure following orlistat and sibutramine treatment: a meta-analysis,” Obesity Reviews, vol. 11, no. 11, pp. 777–791, 2010. View at Publisher · View at Google Scholar
  47. F. G. McMahon, K. Fujioka, B. N. Singh et al., “Efficacy and safety of sibutramine in obese white and African American patients with hypertension: a 1-year, double-blind, placebo-controlled, multicenter trial,” Archives of Internal Medicine, vol. 160, no. 14, pp. 2185–2191, 2000. View at Google Scholar · View at Scopus
  48. J. Scholze, “Sibutramine in clinical practice—a PMS-study with positive effects on blood pressure and metabolic parametersAdipositasbehandlung mit sibutramin unter praxisbedingungen—positive effekte auf metabolische parameter und blutdruck,” Deutsche Medizinische Wochenschrift, vol. 127, no. 12, pp. 606–610, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. W. P. T. James, I. D. Caterson, W. Coutinho et al., “Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects,” The New England Journal of Medicine, vol. 363, no. 10, pp. 905–917, 2010. View at Publisher · View at Google Scholar
  50. BBC News, “Top obesity drug sibutramine being suspended,” 2010, http://www.ema.europa.eu/pdfs/human/referral/sibutramine/3940810en.pdf.
  51. E. J. Hendricks, R. B. Rothman, and F. L. Greenway, “How physician obesity specialists use drugs to treat obesity,” Obesity, vol. 17, no. 9, pp. 1730–1735, 2009. View at Publisher · View at Google Scholar
  52. C. Cercato, V. A. Roizenblatt, C. C. Leança et al., “A randomized double-blind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects,” International Journal of Obesity, vol. 33, no. 8, pp. 857–865, 2009. View at Publisher · View at Google Scholar
  53. J. F. Munro, A. C. MacCuish, E. M. Wilson, and L. J. Duncan, “Comparison of continuous and intermittent anorectic therapy in obesity,” British Medical Journal, vol. 1, no. 5588, pp. 352–354, 1968. View at Google Scholar
  54. R. Grant, A. S. Adams, C. M. Trinacty et al., “Relationship between patient medication adherence and subsequent clinical inertia in type 2 diabetes glycemic management,” Diabetes Care, vol. 30, no. 4, pp. 807–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. J. F. Munro, A. C. MacCuish, A. Marshall, E. M. Wilson, and L. J. Duncan, “Weight-reducing effect of diguanides in obese non-diabetic women,” British Medical Journal, vol. 2, no. 648, pp. 13–15, 1969. View at Google Scholar · View at Scopus
  56. T. Tankova, L. Dakovska, G. Kirilov, and D. Koev, “Metformin in the treatment of obesity in subjects with normal glucose tolerance,” Romanian Journal of Internal Medicine, vol. 41, no. 3, pp. 269–275, 2003. View at Google Scholar · View at Scopus
  57. A. Gokcel, Y. Gumurdulu, H. Karakose et al., “Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity,” Diabetes, Obesity and Metabolism, vol. 4, no. 1, pp. 49–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Sari, M. K. Balci, E. Coban, and G. Yazicioglu, “Comparison of the effect of orlistat vs orlistat plus metformin on weight loss and insulin resistance in obese women,” International Journal of Obesity, vol. 28, no. 8, pp. 1059–1063, 2004. View at Publisher · View at Google Scholar
  59. M. S. Dastjerdi, F. Kazemi, A. Najafian, M. Mohammady, A. Aminorroaya, and M. Amini, “An open-label pilot study of the combination therapy of metformin and fluoxetine for weight reduction,” International Journal of Obesity, vol. 31, no. 4, pp. 713–717, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Fontbonne, M. A. Charles, I. Juhan-Vague et al., “The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution,” Diabetes Care, vol. 19, no. 9, pp. 920–926, 1996. View at Google Scholar
  62. A. Fontbonne, I. Diouf, M. Baccara-Dinet, E. Eschwege, and M. A. Charles, “Effects of 1-year treatment with metformin on metabolic and cardiovascular risk factors in non-diabetic upper-body obese subjects with mild glucose anomalies: a post-hoc analysis of the BIGPRO1 trial,” Diabetes and Metabolism, vol. 35, no. 5, pp. 385–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. E. Amori, J. Lau, and A. G. Pittas, “Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis,” Journal of the American Medical Association, vol. 298, no. 2, pp. 194–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Linnebjerg, P. A. Kothare, Z. Skrivanek et al., “Exenatide: effect of injection time on postprandial glucose in patients with Type 2 diabetes,” Diabetic Medicine, vol. 23, no. 3, pp. 240–245, 2006. View at Publisher · View at Google Scholar
  65. L. Blonde, E. J. Klein, J. Han et al., “Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes,” Diabetes, Obesity and Metabolism, vol. 8, no. 4, pp. 436–447, 2006. View at Publisher · View at Google Scholar
  66. J. Rosenstock, L. I. Klaff, S. Schwartz et al., “Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without prediabetes,” Diabetes Care, vol. 33, no. 6, pp. 1173–1175, 2010. View at Google Scholar
  67. J. B. Buse, D. J. Drucker, K. L. Taylor et al., “DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks,” Diabetes Care, vol. 33, no. 6, pp. 1255–1261, 2010. View at Publisher · View at Google Scholar
  68. R. A. DeFronzo, R. E. Ratner, J. Han, D. D. Kim, M. S. Fineman, and A. D. Baron, “Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2,” Diabetes Care, vol. 28, no. 5, pp. 1092–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. 2008, www.fda.gov/CDER/Drug/InfoSheets/HCP/exenatide2008HCP.htm.
  70. A. Garber, R. Henry, R. Ratner et al., “Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial,” The Lancet, vol. 373, no. 9662, pp. 473–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. “Liraglutide (Victoza) for type 2 diabetes,” Medical Letter on Drugs and Therapeutics, vol. 52, no. 1335, pp. 25–27, 2010.
  72. A. Astrup, S. Rössner, L. Van Gaal et al., “Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study,” The Lancet, vol. 374, no. 9701, pp. 1606–1616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. R. E. Ratner, R. Dickey, M. Fineman et al., “Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: a 1-year, randomized controlled trial,” Diabetic Medicine, vol. 21, no. 11, pp. 1204–1212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. R. E. Ratner, L. L. Want, M. S. Fineman et al., “Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes,” Diabetes Technology and Therapeutics, vol. 4, no. 1, pp. 51–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. P. A. Hollander, P. Levy, M. S. Fineman et al., “Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial,” Diabetes Care, vol. 26, no. 3, pp. 784–790, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. R. Smith, J. E. Blundell, C. Burns et al., “Pramlintide treatment reduces 24-h caloric intake and meal sizes and improves control of eating in obese subjects: a 6-wk translational research study,” American Journal of Physiology, vol. 293, no. 2, pp. E620–E627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Aronne, K. Fujioka, V. Aroda et al., “Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 2977–2983, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. S. R. Smith, L. J. Aronne, C. M. Burns, N. C. Kesty, A. E. Halseth, and C. Weyer, “Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity,” Diabetes Care, vol. 31, no. 9, pp. 1816–1823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. G. A. Bray, P. Hollander, S. Klein et al., “A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity,” Obesity Research, vol. 11, no. 6, pp. 722–733, 2003. View at Google Scholar · View at Scopus
  80. N. Mirza, A. G. Marson, and M. Pirmohamed, “Effect of topiramate on acid-base balance: extent, mechanism and effects,” British Journal of Clinical Pharmacology, vol. 68, no. 5, pp. 655–661, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. B. J. Welch, D. Graybeal, O. W. Moe, N. M. Maalouf, and K. Sakhaee, “Biochemical and stone-risk profiles with topiramate treatment,” American Journal of Kidney Diseases, vol. 48, no. 4, pp. 555–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. K. J. Oommen and S. Mathews, “Zonisamide: a new antiepileptic drug,” Clinical Neuropharmacology, vol. 22, no. 4, pp. 192–200, 1999. View at Google Scholar · View at Scopus
  83. M. Okada, S. Kaneko, T. Hirano et al., “Effects of zonisamide on dopaminergic system,” Epilepsy Research, vol. 22, no. 3, pp. 193–205, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Okada, T. Hirano, Y. Kawata et al., “Biphasic effects of zonisamide on serotonergic system in rat hippocampus,” Epilepsy Research, vol. 34, no. 2-3, pp. 187–197, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Wellmer, S. Wellmer, and J. Bauer, “The impact of zonisamide on weight. A clinical study in 103 patients with epilepsy,” Acta Neurologica Scandinavica, vol. 119, no. 4, pp. 233–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. K. M. Gadde, D. M. Franciscy, H. R. Wagner, and K. R. R. Krishnan 2nd, “Zonisamide for weight loss in obese adults: a randomized controlled trial,” Journal of the American Medical Association, vol. 289, no. 14, pp. 1820–1825, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. E. C. Settle, S. M. Stahl, S. R. Batey, J. A. Johnston, and J. A. Ascher, “Safety profile of sustained-release bupropion in depression: results of three clinical trials,” Clinical Therapeutics, vol. 21, no. 3, pp. 454–463, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. H. Croft, T. Houser, and B. Jamerson, “Lack of weight gain in patients taking bupropion SR: a 1-year placebo-controlled study in patients with major depression,” Obesity Research, vol. 9, p. 47S, 2000. View at Google Scholar
  89. D. E. Jorenby, S. J. Leischow, M. A. Nides et al., “A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation,” The New England Journal of Medicine, vol. 340, no. 9, pp. 685–691, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. J. W. Anderson, F. L. Greenway, K. Fujioka, K. M. Gadde, J. McKenney, and P. M. O'Neil, “Bupropion SR enhances weight loss: a 48-week double-blind, placebo-controlled trial,” Obesity Research, vol. 10, no. 7, pp. 633–641, 2002. View at Google Scholar · View at Scopus
  91. D. J. Goldstein, A. H. Rampey Jr., G. G. Enas, J. H. Potvin, L. A. Fludzinski, and L. R. Levine, “Fluoxetine: a randomized clinical trial in the treatment of obesity,” International Journal of Obesity and Related Metabolic Disorders, vol. 18, no. 3, pp. 129–135, 1994. View at Google Scholar
  92. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman, “Positional cloning of the mouse obese gene and its human homologue,” Nature, vol. 372, no. 6505, pp. 425–432, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. M. A. Pelleymounter, M. J. Cullen, M. B. Baker et al., “Effects of the obese gene product on body weight regulation in ob/ob mice,” Science, vol. 269, no. 5223, pp. 540–543, 1995. View at Google Scholar · View at Scopus
  94. J. Licinio, S. Caglayan, M. Ozata et al., “Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4531–4536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. R. V. Considine, M. K. Sinha, M. L. Heiman et al., “Serum immunoreactive-leptin concentrations in normal-weight and obese humans,” The New England Journal of Medicine, vol. 334, no. 5, pp. 292–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  96. S. B. Heymsfield, A. S. Greenberg, K. Fujioka et al., “Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1568–1575, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Rosenbaum, R. Goldsmith, D. Bloomfield et al., “Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3579–3586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Asakawa, A. Inui, H. Yuzuriha et al., “Characterization of the effects of pancreatic polypeptide in the regulation of energy balance,” Gastroenterology, vol. 124, no. 5, pp. 1325–1336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. R. L. Batterham, M. A. Cohen, S. M. Ellis et al., “Inhibition of food intake in obese subjects by peptide YY3-36,” The New England Journal of Medicine, vol. 349, no. 10, pp. 941–948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Gantz, N. Erondu, M. Mallick et al., “Efficacy and safety of intranasal peptide YY3-36 for weight reduction in obese adults,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 5, pp. 1754–1757, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. M. A. Ghatei, L. O. Uttenthal, and N. D. Christofides, “Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract,” Journal of Clinical Endocrinology and Metabolism, vol. 57, no. 3, pp. 488–495, 1983. View at Google Scholar · View at Scopus
  102. M. A. Cohen, S. M. Ellis, C. W. Le Roux et al., “Oxyntomodulin suppresses appetite and reduces food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4696–4701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Wynne, A. J. Park, C. J. Small et al., “Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial,” Diabetes, vol. 54, no. 8, pp. 2390–2395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. H. L. Fehm, R. Smolnik, W. Kern, G. P. McGregor, U. Bickel, and J. Born, “The melanocortin melanocyte-stimulating hormone/adrenocorticotropin decreases body fat in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1144–1148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Hallschmid, R. Smolnik, G. McGregor, J. Born, and H. L. Fehm, “Brief report: overweight humans are resistant to the weight-reducing effects of melanocortin,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 2, pp. 522–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. S. F. Leibowitz, G. F. Weiss, and G. Shor-Posner, “Hypothalamic serotonin: pharmacological, biochemical, and behavioral analyses of its feeding-suppressive action,” Clinical Neuropharmacology, vol. 11, no. 1, pp. S51–S71, 1988. View at Google Scholar · View at Scopus
  107. M. J. Bickerdike, “5-HT2C receptor agonists as potential drugs for the treatment of obesity,” Current Topics in Medicinal Chemistry, vol. 3, no. 8, pp. 885–897, 2003. View at Google Scholar
  108. S. R. Smith, W. A. Prosser, D. J. Donahue, M. E. Morgan, C. M. Anderson, and W. R. Shanahan, “Lorcaserin (APD356), a selective 5-HT 2C agonist, reduces body weight in obese men and women,” Obesity, vol. 17, no. 3, pp. 494–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. W. J. Thomsen, A. J. Grottick, F. Menzaghi et al., “Lorcaserin, a novel selective human 5-hydroxytryptamine agonist: in vitro and in vivo pharmacological characterization,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 2, pp. 577–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Astrup, D. H. Meier, B. O. Mikkelsen, J. S. Villumsen, and T. M. Larsen, “Weight loss produced by tesofensine in patients with Parkinson's or Alzheimer's disease,” Obesity, vol. 16, no. 6, pp. 1363–1369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Astrup, S. Madsbad, L. Breum, T. J. Jensen, J. P. Kroustrup, and T. M. Larsen, “Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 372, no. 9653, pp. 1906–1913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. R. L. Atkinson, R. C. Blank, D. Schumacher, N. V. Dhurandhar, and D. L. Ritch, “Long-term drug treatment of obesity in a private practice setting,” Obesity Research, vol. 5, no. 6, pp. 578–586, 1997. View at Google Scholar
  113. T. A. Wadden, R. I. Berkowitz, L. G. Womble, D. B. Sarwer, M. E. Arnold, and C. M. Steinberg, “Effects of sibutramine plus orlistat in obese women following 1 year of treatment by sibutramine alone: a placebo-controlled trial,” Obesity Research, vol. 8, no. 6, pp. 431–437, 2000. View at Google Scholar · View at Scopus
  114. A. Kaya, N. Aydin, P. Topsever et al., “Efficacy of sibutramine, orlistat and combination therapy on short-term weight management in obese patients,” Biomedicine and Pharmacotherapy, vol. 58, no. 10, pp. 582–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. T. Bloomgarden, “Gestational diabetes mellitus and obesity,” Diabetes Care, vol. 33, no. 5, pp. e60–e65, 2010. View at Google Scholar
  116. T. Waden, , Ph.D. thesis, University of Pennsylvania's Center for Weight and Eating Disorders, Philadelphia, Pa, USA, presented the Orexigen study findings in a presentation to the annual meeting of the American Diabetes Association, held June 6-9 in New Orleans, La, USA.
  117. L. J. Aronne, A. E. Halseth, C. M. Burns, S. Miller, and L. Z. Shen, “Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial,” Obesity, vol. 18, no. 9, pp. 1739–1746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. J. D. Roth, B. L. Roland, R. L. Cole et al., “Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 20, pp. 7257–7262, 2008. View at Publisher · View at Google Scholar · View at Scopus