Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2012, Article ID 535624, 8 pages
http://dx.doi.org/10.1155/2012/535624
Review Article

Recent Advances in Potential Clinical Application of Ghrelin in Obesity

Laboratory of Biological Chemistry and Nutrition, Faculty of Medicine, Université libre de Bruxelles, 1070 Brussels, Belgium

Received 17 June 2011; Accepted 4 December 2011

Academic Editor: R. Prager

Copyright © 2012 Christine Delporte. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. A. Gutierrez, P. J. Solenberg, D. R. Perkins et al., “Ghrelin octanoylation mediated by an orphan lipid transferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6320–6325, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. E. Cummings, J. Q. Purnell, R. S. Frayo, K. Schmidova, B. E. Wisse, and D. S. Weigle, “A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans,” Diabetes, vol. 50, no. 8, pp. 1714–1719, 2001. View at Google Scholar · View at Scopus
  5. M. Tschöp, R. Wawarta, R. L. Riepl et al., “Post-prandial decrease of circulating human ghrelin levels,” Journal of Endocrinological Investigation, vol. 24, no. 6, pp. RC19–RC21, 2001. View at Google Scholar
  6. A. M. Wren, L. J. Seal, M. A. Cohen et al., “Ghrelin enhances appetite and increases food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5992–5995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Trudel, C. Tomasetto, M. C. Rio et al., “Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat,” American Journal of Physiology, vol. 282, no. 6, pp. G948–G952, 2002. View at Google Scholar · View at Scopus
  8. Y. Date, M. Kojima, H. Hosoda et al., “Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans,” Endocrinology, vol. 141, no. 11, pp. 4255–4261, 2000. View at Google Scholar · View at Scopus
  9. G. Rindi, V. Necchi, A. Savio et al., “Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues,” Histochemistry and Cell Biology, vol. 117, no. 6, pp. 511–519, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. I. Sakata, K. Nakamura, M. Yamazaki et al., “Ghrelin-producing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract,” Peptides, vol. 23, no. 3, pp. 531–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Hosoda, M. Kojima, T. Mizushima, S. Shimizu, and K. Kangawa, “Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 64–70, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. Nishi, H. Hiejima, H. Hosoda et al., “Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin,” Endocrinology, vol. 146, no. 5, pp. 2255–2264, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Patterson, K. G. Murphy, C. W. Le Roux, M. A. Ghatei, and S. R. Bloom, “Characterization of ghrelin-like immunoreactivity in human plasma,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 4, pp. 2205–2211, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Shanado, M. Kometani, H. Uchiyama, S. Koizumi, and N. Teno, “Lysophospholipase I identified as a ghrelin deacylation enzyme in rat stomach,” Biochemical and Biophysical Research Communications, vol. 325, no. 4, pp. 1487–1494, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. Satou, Y. Nishi, J. Yoh, Y. Hattori, and H. Sugimoto, “Identification and characterization of acyl-protein thioesterase 1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal bovine serum and conditioned medium,” Endocrinology, vol. 151, no. 10, pp. 4765–4775, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. C. De Vriese, F. Gregoire, R. Lema-Kisoka, M. Waelbroeck, P. Robberecht, and C. Delporte, “Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites,” Endocrinology, vol. 145, no. 11, pp. 4997–5005, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. Akamizu, T. Shinomiya, T. Irako et al., “Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new direct ELISA assay,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 1, pp. 6–9, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. H. Hosoda, K. Doi, N. Nagaya et al., “Optimum collection and storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl ghrelin in blood samples,” Clinical Chemistry, vol. 50, no. 6, pp. 1077–1080, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. C. De Vriese, M. Hacquebard, F. Gregoire, Y. Carpentier, and C. Delporte, “Ghrelin interacts with human plasma lipoproteins,” Endocrinology, vol. 148, no. 5, pp. 2355–2362, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. B. Li, E. G. Duysen, and O. Lockridge, “The butyrylcholinesterase knockout mouse is obese on a high-fat diet,” Chemico-Biological Interactions, vol. 175, no. 1–3, pp. 88–91, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. N. J. Beaumont, V. O. Skinner, T. M. M. Tan et al., “Ghrelin can bind to a species of high density lipoprotein associated with paraoxonase,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 8877–8880, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, and I. Wakabayashi, “Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats,” Diabetes, vol. 50, no. 7-12, pp. 2438–2443, 2001. View at Google Scholar · View at Scopus
  23. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Shintani, Y. Ogawa, K. Ebihara et al., “Rapid publication ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway,” Diabetes, vol. 50, no. 2, pp. 227–232, 2001. View at Google Scholar · View at Scopus
  25. M. Tschop, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. Soriano-Guillén, V. Barrios, A. Campos-Barros, and J. Argente, “Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation,” Journal of Pediatrics, vol. 144, no. 1, pp. 36–42, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. R. Castañeda, J. Tong, R. Datta, M. Culler, and M. H. Tschöp, “Ghrelin in the regulation of body weight and metabolism,” Frontiers in Neuroendocrinology, vol. 31, no. 1, pp. 44–60, 2010. View at Publisher · View at Google Scholar · View at PubMed
  28. D. L. Williams, H. J. Grill, D. E. Cummings, and J. M. Kaplan, “Overfeeding-induced weight gain suppresses plasma ghrelin levels in rats,” Journal of Endocrinological Investigation, vol. 29, no. 10, pp. 863–868, 2006. View at Google Scholar · View at Scopus
  29. E. Palik, E. Baranyi, Z. Melczer et al., “Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance,” Diabetes Research and Clinical Practice, vol. 76, no. 3, pp. 351–357, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. H. Hosojima, T. Togo, T. Odawara et al., “Early effects of olanzapine on serum levels of ghrelin, adiponectin and leptin in patients with schizophrenia,” Journal of Psychopharmacology, vol. 20, no. 1, pp. 75–79, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. E. Otukonyong, M. G. Dube, R. Torto, P. S. Kalra, and S. P. Kalra, “High-fat Diet-induced ultradian leptin and insulin hypersecretion are absent in obesity-resistant rats,” Obesity Research, vol. 13, no. 6, pp. 991–999, 2005. View at Google Scholar · View at Scopus
  32. D. Perez-Tilve, K. Heppner, H. Kirchner et al., “Ghrelin-induced adiposity is independent of orexigenic effects,” The FASEB Journal, vol. 25, no. 8, pp. 2814–2822, 2011. View at Publisher · View at Google Scholar · View at PubMed
  33. Y. Sun, P. Wang, H. Zheng, and R. G. Smith, “Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4679–4684, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. M. Zigman, Y. Nakano, R. Coppari et al., “Mice lacking ghrelin receptors resist the development of diet-induced obesity,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3564–3572, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. H. A. Halem, J. E. Taylor, J. Z. Dong et al., “A novel growth hormone secretagogue-1a receptor antagonist that blocks ghrelin-induced growth hormone secretion but induces increased body weight gain,” Neuroendocrinology, vol. 81, no. 5, pp. 339–349, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. T. Inhoff, B. Wiedenmann, B. F. Klapp, H. Mönnikes, and P. Kobelt, “Is desacyl ghrelin a modulator of food intake?” Peptides, vol. 30, no. 5, pp. 991–994, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. Stengel, M. Goebel, L. Wang, and Y. Taché, “Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight,” Peptides, vol. 31, no. 2, pp. 357–369, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Kirchner, J. A. Gutierrez, P. J. Solenberg et al., “GOAT links dietary lipids with the endocrine control of energy balance,” Nature Medicine, vol. 15, no. 7, pp. 741–745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. D. E. Cummings, K. Clement, J. Q. Purnell et al., “Elevated plasma ghrelin levels in Prader-Willi syndrome,” Nature Medicine, vol. 8, no. 7, pp. 643–644, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. Delparigi, M. Tschöp, M. L. Heiman et al., “High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5461–5464, 2002. View at Publisher · View at Google Scholar
  41. A. H. Kissebah, G. E. Sonnenberg, J. Myklebust et al., “Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14478–14483, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. H. Yeh, P. L. Jeffery, R. P. Duncan, A. C. Herington, and L. K. Chopin, “Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer,” Clinical Cancer Research, vol. 11, no. 23, pp. 8295–8303, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. Bing, L. Ambye, M. Fenger et al., “Large-scale studies of the Leu72Met polymorphism of the ghrelin gene in relation to the metabolic syndrome and associated quantitative traits,” Diabetic Medicine, vol. 22, no. 9, pp. 1157–1160, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. Hinney, A. Hoch, F. Geller et al., “Ghrelin gene: identification of missense variants and a frameshift mutation in extremely obese children and adolescents and healthy normal weight students,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2716–2719, 2002. View at Publisher · View at Google Scholar
  45. L. H. Larsen, A. P. Gjesing, T. I. A. Sørensen et al., “Mutation analysis of the preproghrelin gene: no association with obesity and type 2 diabetes,” Clinical Biochemistry, vol. 38, no. 5, pp. 420–424, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. O. Ukkola, E. Ravussin, P. Jacobson et al., “Mutations in the preproghrelin/ghrelin gene associated with obesity in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3996–3999, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Vivenza, A. Rapa, N. Castellino et al., “Ghrelin gene polymorphisms and ghrelin, insulin, IGF-I, leptin and anthropometric data in children and adolescents,” European Journal of Endocrinology, vol. 151, no. 1, pp. 127–133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. H. J. Wang, F. Geller, A. Dempfle et al., “Ghrelin receptor gene: identification of several sequence variants in extremely obese children and adolescents, healthy normal-weight and underweight students, and children with short normal stature,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 1, pp. 157–162, 2004. View at Publisher · View at Google Scholar
  49. M. Korbonits, M. Gueorguiev, E. O'Grady et al., “A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 8, pp. 4005–4008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. G. R. Martin, J. C. Loredo, and G. Sun, “Lack of association of ghrelin precursor gene variants and percentage body fat or serum lipid profiles,” Obesity, vol. 16, no. 4, pp. 908–912, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. D. G. Miraglia, N. Santoro, G. Cirillo et al., “Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity,” International Journal of Obesity, vol. 28, no. 3, pp. 447–450, 2004. View at Publisher · View at Google Scholar · View at PubMed
  52. R. M. Dardennes, P. Zizzari, V. Tolle et al., “Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with Anorexia nervosa: association with subtype, body-mass index, severity and age of onset,” Psychoneuroendocrinology, vol. 32, no. 2, pp. 106–113, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Google Scholar · View at Scopus
  54. A. Ikezaki, H. Hosoda, K. Ito et al., “Fasting plasma ghrelin levels are negatively correlated with insulin resistance and PAI-1, but not with leptin, in obese children and adolescents,” Diabetes, vol. 51, no. 12, pp. 3408–3411, 2002. View at Google Scholar · View at Scopus
  55. S. M. Pöykkö, E. Kellokoski, S. Hörkkö, H. Kauma, Y. A. Kesäniemi, and O. Ukkola, “Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes,” Diabetes, vol. 52, no. 10, pp. 2546–2553, 2003. View at Publisher · View at Google Scholar
  56. L. Pacifico, E. Poggiogalle, F. Costantino et al., “Acylated and nonacylated ghrelin levels and their associations with insulin resistance in obese and normal weight children with metabolic syndrome,” European Journal of Endocrinology, vol. 161, no. 6, pp. 861–870, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. J. Delhanty and A. J. van der Lely, “Ghrelin and glucose homeostasis,” Peptides, vol. 32, no. 11, pp. 2309–2318, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. S. Sangiao-Alvarellos and F. Cordido, “Effect of ghrelin on glucose-insulin homeostasis: therapeutic implications,” International Journal of Peptides, vol. 2010, Article ID 234709, 25 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  59. I. Sakata, J. Yang, C. E. Lee et al., “Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells,” American Journal of Physiology, vol. 297, no. 1, pp. E134–E141, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. H. Ohgusu, K. Shirouzu, Y. Nakamura et al., “Ghrelin O-acyltransferase (GOAT) has a preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor,” Biochemical and Biophysical Research Communications, vol. 386, no. 1, pp. 153–158, 2009. View at Publisher · View at Google Scholar · View at PubMed
  61. M. Kojima and K. Kangawa, “Structure and function of Ghrelin,” Results and Problems in Cell Differentiation, vol. 46, pp. 89–115, 2008. View at Publisher · View at Google Scholar · View at PubMed
  62. D. E. Cummings, “Ghrelin and the short- and long-term regulation of appetite and body weight,” Physiology and Behavior, vol. 89, no. 1, pp. 71–84, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. J. Liu, C. E. Prudom, R. Nass et al., “Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 5, pp. 1980–1987, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. C. R. González, M. J. Vázquez, M. López, and C. Diéguez, “Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa,” Journal of Molecular Endocrinology, vol. 41, no. 5-6, pp. 415–421, 2008. View at Publisher · View at Google Scholar · View at PubMed
  65. T. J. Zhao, G. Liang, R. L. Li et al., “Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7467–7472, 2010. View at Publisher · View at Google Scholar · View at PubMed
  66. T. D. Müller, M. H. Tschöp, I. Jarick et al., “Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa,” Journal of Psychiatric Research, vol. 45, no. 5, pp. 706–711, 2011. View at Publisher · View at Google Scholar · View at PubMed
  67. B. P. Barnett, Y. Hwang, M. S. Taylor et al., “Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor,” Science, vol. 330, no. 6011, pp. 1689–1692, 2010. View at Publisher · View at Google Scholar · View at PubMed
  68. E. P. Zorrilla, S. Iwasaki, J. A. Moss et al., “Vaccination against weight gain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 35, pp. 13226–13231, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. S. C. Lu, J. Xu, N. Chinookoswong et al., “An acyl-ghrelin-specific neutralizing antibody inhibits the acute ghrelin-mediated orexigenic effects in mice,” Molecular Pharmacology, vol. 75, no. 4, pp. 901–907, 2009. View at Publisher · View at Google Scholar · View at PubMed
  70. A. Asakawa, A. Inui, T. Kaga et al., “Antagonism of ghrelin receptor reduces food intake and body weight gain in mice,” Gut, vol. 52, no. 7, pp. 947–952, 2003. View at Publisher · View at Google Scholar
  71. L. P. Shearman, S. P. Wang, S. Helmling et al., “Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice,” Endocrinology, vol. 147, no. 3, pp. 1517–1526, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. P. Kobelt, S. Helmling, A. Stengel et al., “Anti-ghrelin Spiegelmer NOX-B11 inhibits neurostimulatory and orexigenic effects of peripheral ghrelin in rats,” Gut, vol. 55, no. 6, pp. 788–792, 2006. View at Publisher · View at Google Scholar · View at PubMed
  73. S. Helmling, C. Maasch, D. Eulberg et al., “Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13174–13179, 2004. View at Publisher · View at Google Scholar · View at PubMed
  74. C. Becskei, K. U. Bilik, S. Klussmann, F. Jarosch, T. A. Lutz, and T. Riediger, “The anti-ghrelin spiegelmer NOX-B11-3 blocks ghrelin- but not fasting-induced neuronal activation in the hypothalamic arcuate nucleus,” Journal of Neuroendocrinology, vol. 20, no. 1, pp. 85–92, 2008. View at Publisher · View at Google Scholar · View at PubMed
  75. B. Beck, S. Richy, and A. Stricker-Krongrad, “Feeding response to ghrelin agonist and antagonist in lean and obese Zucker rats,” Life Sciences, vol. 76, no. 4, pp. 473–478, 2004. View at Publisher · View at Google Scholar · View at PubMed
  76. J. Rudolph, W. P. Esler, S. O'Connor et al., “Quinazolinone derivatives as orally available ghrelin receptor antagonists for the treatment of diabetes and obesity,” Journal of Medicinal Chemistry, vol. 50, no. 21, pp. 5202–5216, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. W. P. Esler, J. Rudolph, T. H. Claus et al., “Small-molecule Ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss,” Endocrinology, vol. 148, no. 11, pp. 5175–5185, 2007. View at Publisher · View at Google Scholar · View at PubMed
  78. L. Demange, D. Boeglin, A. Moulin et al., “Synthesis and pharmacological in vitro and in vivo evaluations of novel triazole derivatives as ligands of the ghrelin receptor. 1,” Journal of Medicinal Chemistry, vol. 50, no. 8, pp. 1939–1957, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. A. Moulin, L. Demange, J. Ryan et al., “Trisubstituted 1,2,4-triazoles as ligands for the ghrelin receptor: on the significance of the orientation and substitution at position 3,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 1, pp. 164–168, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. J. P. Leyris, T. Roux, E. Trinquet et al., “Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a,” Analytical Biochemistry, vol. 408, no. 2, pp. 253–262, 2011. View at Publisher · View at Google Scholar · View at PubMed
  81. M. Yu, M. Lizarzaburu, H. Beckmann et al., “Identification of piperazine-bisamide GHSR antagonists for the treatment of obesity,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 5, pp. 1758–1762, 2010. View at Publisher · View at Google Scholar · View at PubMed
  82. F. M. Sabbatini, R. Di Fabio, M. Corsi et al., “Discovery process and characterization of novel carbohydrazide derivatives as potent and selective GHSR1a antagonists,” ChemMedChem, vol. 5, no. 9, pp. 1450–1455, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. E. Perdonà, F. Faggioni, A. Buson, F. M. Sabbatini, C. Corti, and M. Corsi, “Pharmacological characterization of the ghrelin receptor antagonist, GSK1614343 in rat RC-4B/C cells natively expressing GHS type 1a receptors,” European Journal of Pharmacology, vol. 650, no. 1, pp. 178–183, 2011. View at Publisher · View at Google Scholar · View at PubMed
  84. V. J. Costantini, E. Vicentini, F. M. Sabbatini et al., “GSK1614343, a novel ghrelin receptor antagonist, produces an unexpected increase of food intake and body weight in rodents and dogs,” Neuroendocrinology, vol. 94, no. 2, pp. 158–168, 2011. View at Publisher · View at Google Scholar · View at PubMed
  85. H. A. Halem, J. E. Taylor, J. Z. Dong et al., “Novel analogs of ghrelin: physiological and clinical implications,” European Journal of Endocrinology, vol. 151, no. 1, pp. S71–S75, 2004. View at Publisher · View at Google Scholar
  86. I. Depoortere, “Targeting the ghrelin receptor to regulate food intake,” Regulatory Peptides, vol. 156, no. 1–3, pp. 13–23, 2009. View at Publisher · View at Google Scholar · View at PubMed
  87. B. Holst, A. Cygankiewicz, T. H. Jensen, M. Ankersen, and T. W. Schwartz, “High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist,” Molecular Endocrinology, vol. 17, no. 11, pp. 2201–2210, 2003. View at Publisher · View at Google Scholar · View at PubMed
  88. N. D. Holliday, B. Holst, E. A. Rodionova, T. W. Schwartz, and H. M. Cox, “Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor,” Molecular Endocrinology, vol. 21, no. 12, pp. 3100–3112, 2007. View at Publisher · View at Google Scholar · View at PubMed
  89. B. Holst and T. W. Schwartz, “Constitutive ghrelin receptor activity as a signaling set-point in appetite regulation,” Trends in Pharmacological Sciences, vol. 25, no. 3, pp. 113–117, 2004. View at Publisher · View at Google Scholar
  90. B. Holst, M. Lang, E. Brandt et al., “Ghrelin receptor inverse agonists: identification of an active peptide core and its interaction epitopes on the receptor,” Molecular Pharmacology, vol. 70, no. 3, pp. 936–946, 2006. View at Publisher · View at Google Scholar · View at PubMed
  91. S. Janssen, J. Laermans, P. J. Verhulst, T. Thijs, J. Tack, and I. Depoortere, “Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 5, pp. 2094–2099, 2011. View at Publisher · View at Google Scholar · View at PubMed