Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2012, Article ID 985902, 16 pages
http://dx.doi.org/10.1155/2012/985902
Research Article

Combined Effects of Aerobic Exercise and Diet on Lipids and Lipoproteins in Overweight and Obese Adults: A Meta-Analysis

1Department of Community Medicine, School of Medicine, West Virginia University, P.O. Box 9190, Morgantown, WV 26506-9190, USA
2Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111-1524, USA
3Prevention Research Center, Stanford University, Palo Alto, CA 94305-2004, USA

Received 18 August 2011; Accepted 1 December 2011

Academic Editor: Eliot Brinton

Copyright © 2012 George A. Kelley et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Obesity and Overweight, 2011, http://www.who.int/mediacentre/factsheets/fs311/en/index.html.
  2. C. L. Ogden and M. D. Carroll, Prevalence of Overweight, Obesity, and Extreme Obesity Among Adults: United States, Trends 1976–1980 Through 2007-2008, National Center for Health Statistics, 2010.
  3. D. Lloyd-Jones, R. J. Adams, T. M. Brown et al., “Executive summary: heart disease and stroke statistics-2010 update: a report from the american heart association,” Circulation, vol. 121, no. 7, pp. e46–e215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Mokdad, E. S. Ford, B. A. Bowman et al., “Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001,” Journal of the American Medical Association, vol. 289, no. 1, pp. 76–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. National Cholesterol Education Program, National Heart Lung and Blood Institute and National Institutes of Health, “Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report,” Circulation, vol. 106, pp. 3143–3421, 2002. View at Google Scholar
  6. T. D. Agurs-Collins, S. K. Kumanyika, T. R. Ten Have, and L. L. Adams-Campbell, “A randomized controlled trial of weight reduction and exercise for diabetes management in older African-American subjects,” Diabetes Care, vol. 20, no. 10, pp. 1503–1511, 1997. View at Google Scholar · View at Scopus
  7. S. A. Anderssen, A. K. Hjelstuen, I. Hjermann, K. Bjerkan, and I. Holme, “Fluvastatin and lifestyle modification for reduction of carotid intima-media thickness and left ventricular mass progression in drug-treated hypertensives,” Atherosclerosis, vol. 178, no. 2, pp. 387–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. J. Arciero, C. L. Gentile, R. Martin-Pressman et al., “Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factors,” International Journal of Sport Nutrition and Exercise Metabolism, vol. 16, no. 4, pp. 373–392, 2006. View at Google Scholar · View at Scopus
  9. P. Avila and M. F. Hovell, “Physical activity training for weight loss in Latinas: a controlled trial,” International Journal of Obesity, vol. 18, no. 7, pp. 476–482, 1994. View at Google Scholar
  10. R. D. Hagan, S. J. Upton, L. Wong, and J. Whittam, “The effects of aerobic conditioning and/or caloric restriction in overweight men and women,” Medicine and Science in Sports and Exercise, vol. 18, no. 1, pp. 87–94, 1986. View at Google Scholar · View at Scopus
  11. K. Hirose, K. Tajima, and S. Miura, “A model obesity control program focusing on a healthy diet and gentle exercise in Aichi cancer center hospital,” Asian Pacific Journal of Cancer Prevention, vol. 3, pp. 149–154, 2002. View at Google Scholar
  12. R. Hopewell, The effect of fiber and exercise on weight loss and blood lipids in moderately overweight women, dissertation, West Virginia University, 1989.
  13. K. A. McAuley, S. M. Williams, J. I. Mann et al., “Intensive lifestyle changes are necessary to improve insulin sensitivity: a randomized controlled trial,” Diabetes Care, vol. 25, no. 3, pp. 445–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. R. Miller, T. P. Erlinger, D. R. Young et al., “Results of the diet, exercise, and weight loss intervention trial (DEW-IT),” Hypertension, vol. 40, no. 5, pp. 612–618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. C. Nieman, D. W. Brock, D. Butterworth, A. C. Utter, and C. C. Nieman, “Reducing diet and/or exercise training decreases the lipid and lipoprotein risk factors of moderately obese women,” Journal of the American College of Nutrition, vol. 21, no. 4, pp. 344–350, 2002. View at Google Scholar · View at Scopus
  16. R. R. Wing, E. Venditti, J. M. Jakicic, B. A. Polley, and W. Lang, “Lifestyle intervention in overweight individuals with a family history of diabetes,” Diabetes Care, vol. 21, no. 3, pp. 350–359, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. D. Wood, M. L. Stefanick, P. T. Williams, and W. L. Haskell, “The effects on plasma lipoproteins of a prudent weight-reducing diet, with or without exercise, in overweight men and women,” The New England Journal of Medicine, vol. 325, no. 7, pp. 461–466, 1991. View at Google Scholar · View at Scopus
  18. L. V. Hedges and I. Olkin, “Vote-counting methods in research synthesis,” Psychological Bulletin, vol. 88, no. 2, pp. 359–369, 1980. View at Publisher · View at Google Scholar · View at Scopus
  19. H. S. Sacks, J. Berrier, and D. Reitman, “Meta-analyses of randomized controlled trials,” The New England Journal of Medicine, vol. 316, no. 8, pp. 450–455, 1987. View at Google Scholar · View at Scopus
  20. A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” Annals of Internal Medicine, vol. 151, no. 4, pp. W-65–W-94, 2009. View at Google Scholar · View at Scopus
  21. G. V. Mann, K. Teel, O. Hayes, A. McNally, and D. Bruno, “Exercise in the disposition of dietary calories: regulation of serum lipoprotein and cholesterol levels in human subjects,” The New England Journal of Medicine, vol. 253, pp. 349–355, 1955. View at Google Scholar
  22. Physical Activity Guidelines Advisory Committee, Physical Activity Guidelines Advisory Report, U.S. Department of Health and Human Services, Washington, DC, USA, 2008.
  23. K. F. Schulz, L. Chalmers, R. J. Hayes, and D. G. Altman, “Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials,” Journal of the American Medical Association, vol. 273, no. 5, pp. 408–412, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Emerson, E. Burdick, D. C. Hoaglin, F. Mosteller, and T. C. Chalmers, “An empirical study of the possible relation of treatment differences to quality scores in controlled randomized clinical trials,” Controlled Clinical Trials, vol. 11, no. 5, pp. 339–352, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Jüni, A. Witschi, R. Bloch, and M. Egger, “The hazards of scoring the quality of clinical trials for meta-analysis,” Journal of the American Medical Association, vol. 282, no. 11, pp. 1054–1060, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ahn and B. J. Becker, “Incorporating quality scores in meta-analysis,” Journal of Educational and Behavioral Statistics, vol. 36, no. 5, pp. 555–585, 2011. View at Publisher · View at Google Scholar
  27. J. P. T. Higgins and S. Green, 2009 Cochrane Handbook for Systematic Reviews of Interventions (version 5.0.2), 2009.
  28. D. Follmann, P. Elliott, I. Suh, and J. Cutler, “Variance imputation for overviews of clinical trials with continuous response,” Journal of Clinical Epidemiology, vol. 45, no. 7, pp. 769–773, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986. View at Google Scholar · View at Scopus
  30. J. E. Hunter and F. L. Schmidt, “Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge,” International Journal of Selection and Assessment, vol. 8, no. 4, pp. 275–292, 2000. View at Google Scholar · View at Scopus
  31. W. G. Cochran, “The combination of estimates from different experiments,” Biometrics, vol. 10, pp. 101–129, 1954. View at Google Scholar
  32. J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003. View at Google Scholar · View at Scopus
  33. S. Duval and R. Tweedie, “Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis,” Biometrics, vol. 56, no. 2, pp. 455–463, 2000. View at Google Scholar · View at Scopus
  34. J. Lau, C. H. Schmid, and T. C. Chalmers, “Cumulative meta-analysis of clinical trials builds evidence for exemplary medical care,” Journal of Clinical Epidemiology, vol. 48, no. 1, pp. 45–57, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. J. P. T. Higgins, S. G. Thompson, and D. J. Spiegelhalter, “A re-evaluation of random-effects meta-analysis,” Journal of the Royal Statistical Society Series A, vol. 172, no. 1, pp. 137–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. A. Kelley, K. S. Kelley, and Z. Vu Tran, “Aerobic exercise, lipids and lipoproteins in overweight and obese adults: a meta-analysis of randomized controlled trials,” International Journal of Obesity, vol. 29, no. 8, pp. 881–893, 2005. View at Publisher · View at Google Scholar
  37. J. L. Tang, J. M. Armitage, T. Lancaster, C. A. Silagy, G. H. Fowler, and H. A. W. Neil, “Systematic review of dietary intervention trials to lower blood total cholesterol in free-living subjects,” British Medical Journal, vol. 316, no. 7139, pp. 1213–1219, 1998. View at Google Scholar · View at Scopus
  38. A. L. Gould, G. M. Davies, E. Alemao, D. D. Yin, and J. R. Cook, “Cholesterol reduction yields clinical benefits: meta-analysis including recent trials,” Clinical Therapeutics, vol. 29, no. 5, pp. 778–794, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Lewington, G. Whitlock, R. Clarke et al., “Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths,” The Lancet, vol. 370, pp. 1829–1839, 2007. View at Google Scholar
  40. Y. He, T. H. Lam, L. S. Li, L. S. Li, S. F. He, and B. Q. Liang, “Triglyceride and coronary heart disease mortality in a 24-year follow-up study in Xi'an, China,” Annals of Epidemiology, vol. 14, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. D. G. Bonett, “Meta-analytic interval estimation for standardized and unstandardized mean differences,” Psychological Methods, vol. 14, no. 3, pp. 225–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Cui, R. S. Blumenthal, J. A. Flaws et al., “Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality,” Archives of Internal Medicine, vol. 161, no. 11, pp. 1413–1419, 2001. View at Google Scholar · View at Scopus
  43. T. Pischon, C. J. Girman, F. M. Sacks, N. Rifai, M. J. Stampfer, and E. B. Rimm, “Non-high-density lipoprotein cholesterol and apolipoprotein B in the prediction of coronary heart disease in men,” Circulation, vol. 112, no. 22, pp. 3375–3383, 2005. View at Publisher · View at Google Scholar · View at Scopus