Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2014, Article ID 829862, 9 pages
http://dx.doi.org/10.1155/2014/829862
Research Article

Intrauterine Growth Restriction Increases TNFα and Activates the Unfolded Protein Response in Male Rat Pups

1Division of Nutrition, University of Utah, Salt Lake City, UT 84158, USA
2Department of Pediatrics, University of Utah, Salt Lake City, UT 84158, USA
3Division of Neonatology, University of Utah, P.O. Box 581289, Salt Lake City, UT 84158, USA

Received 25 November 2013; Revised 4 February 2014; Accepted 12 March 2014; Published 6 April 2014

Academic Editor: Michel M. Murr

Copyright © 2014 Emily S. Riddle et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Rosenberg, “The IUGR newborn,” Seminars in Perinatology, vol. 32, no. 3, pp. 219–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Cetin and G. Alvino, “Intrauterine growth restriction: implications for placental metabolism and transport. A review,” Placenta, vol. 30, supplement A, pp. S77–S82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. L. Kinzler and A. M. Vintzileos, “Fetal growth restriction: a modern approach,” Current Opinion in Obstetrics and Gynecology, vol. 20, no. 2, pp. 125–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Jaquet, A. Gaboriau, P. Czernichow, and C. Levy-Marchal, “Insulin resistance early in adulthood in subjects born with intrauterine growth retardation,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 4, pp. 1401–1406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at Google Scholar · View at Scopus
  6. K. K. Ong and D. B. Dunger, “Birth weight, infant growth and insulin resistance,” European Journal of Endocrinology, Supplement, vol. 151, no. 3, pp. U131–U139, 2004. View at Google Scholar · View at Scopus
  7. E. C. Cottrell and S. E. Ozanne, “Early life programming of obesity and metabolic disease,” Physiology and Behavior, vol. 94, no. 1, pp. 17–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Desai, M. Beall, and M. G. Ross, “Developmental origins of obesity: programmed adipogenesis,” Current Diabetes Reports, vol. 13, no. 1, pp. 27–33, 2013. View at Google Scholar
  9. C. S. Fox, J. M. Massaro, U. Hoffmann et al., “Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the framingham heart study,” Circulation, vol. 116, no. 1, pp. 39–48, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. A. Joss-Moore, Y. Wang, M. S. Campbell et al., “Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity,” Early Human Development, vol. 86, no. 3, pp. 179–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. H. Lane, D. E. Kelley, V. H. Ritov, A. E. Tsirka, and E. M. Gruetzmacher, “Altered expression and function of mitochondrial β-oxidation enzymes in juvenile intrauterine-growth-retarded rat skeletal muscle,” Pediatric Research, vol. 50, no. 1, pp. 83–90, 2001. View at Google Scholar · View at Scopus
  12. G. R. Hajer, T. W. van Haeften, and F. L. J. Visseren, “Adipose tissue dysfunction in obesity, diabetes, and vascular diseases,” European Heart Journal, vol. 29, no. 24, pp. 2959–2971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Ruan and H. F. Lodish, “Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α,” Cytokine and Growth Factor Reviews, vol. 14, no. 5, pp. 447–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zhang, Z. Gao, J. Yin, M. J. Quon, and J. Ye, “S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2,” The Journal of Biological Chemistry, vol. 283, no. 51, pp. 35375–35382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Black, C. T. Rauch, C. J. Kozlosky et al., “A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells,” Nature, vol. 385, no. 6618, pp. 729–733, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Wajant, K. Pfizenmaier, and P. Scheurich, “Tumor necrosis factor signaling,” Cell Death and Differentiation, vol. 10, no. 1, pp. 45–65, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Chen and D. V. Goeddel, “TNF-R1 signaling: a beautiful pathway,” Science, vol. 296, no. 5573, pp. 1634–1635, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Xue, J.-H. Piao, A. Nakajima et al., “Tumor necrosis factor α (TNFα) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFα,” The Journal of Biological Chemistry, vol. 280, no. 40, pp. 33917–33925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Hetz, “The unfolded protein response: controlling cell fate decisions under ER stress and beyond,” Nature Reviews Molecular Cell Biology, vol. 13, no. 2, pp. 89–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. U. Özcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. N. Bagley, Y. Wang, M. S. Campbell, X. Yu, R. Lane, and L. A. Joss-Moore, “Maternal docosahexanoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition,” Journal of Obesity, vol. 2013, Article ID 312153, 7 pages, 2013. View at Publisher · View at Google Scholar
  23. L. A. Joss-Moore, Y. Wang, M. L. Baack et al., “IUGR decreases PPARγ and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation,” Early Human Development, vol. 86, no. 12, pp. 785–791, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. “Guiding principles for research involving animals and human beings,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, vol. 283, no. 2, pp. R281–R283, 2002.
  25. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  26. L. K. Meyer, T. P. Ciaraldi, R. R. Henry, A. C. Wittgrove, and S. A. Phillips, “Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity,” Adipocyte, vol. 2, no. 4, pp. 217–226, 2013. View at Google Scholar
  27. M. Bahceci, D. Gokalp, S. Bahceci, A. Tuzcu, S. Atmaca, and S. Arikan, “The correlation between adiposity and adiponectin, tumor necrosis factor α, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults?” Journal of Endocrinological Investigation, vol. 30, no. 3, pp. 210–214, 2007. View at Google Scholar · View at Scopus
  28. G. Winkler, S. Kiss, L. Keszthelyi et al., “Expression of tumor necrosis factor (TNF)-α protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-α, soluble serum TNF-receptor-2 concentrations and C-peptide level,” European Journal of Endocrinology, vol. 149, no. 2, pp. 129–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Alkhouri, A. Gornicka, M. P. Berk et al., “Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis,” The Journal of Biological Chemistry, vol. 285, no. 5, pp. 3428–3438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Simmons, L. J. Templeton, and S. J. Gertz, “Intrauterine growth retardation leads to the development of type 2 diabetes in the rat,” Diabetes, vol. 50, no. 10, pp. 2279–2286, 2001. View at Google Scholar · View at Scopus
  31. M. Qatanani and M. A. Lazar, “Mechanisms of obesity-associated insulin resistance: many choices on the menu,” Genes and Development, vol. 21, no. 12, pp. 1443–1455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Aguirre, T. Uchida, L. Yenush, R. Davis, and M. F. White, “The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307,” The Journal of Biological Chemistry, vol. 275, no. 12, pp. 9047–9054, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Lovejoy and A. Sainsbury, “Sex differences in obesity and the regulation of energy homeostasis: etiology and pathophysiology,” Obesity Reviews, vol. 10, no. 2, pp. 154–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Medrikova, Z. M. Jilkova, K. Bardova, P. Janovska, M. Rossmeisl, and J. Kopecky, “Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control,” International Journal of Obesity, vol. 36, no. 2, pp. 262–272, 2012. View at Publisher · View at Google Scholar · View at Scopus