Table of Contents Author Guidelines Submit a Manuscript
Journal of Obesity
Volume 2018, Article ID 1741962, 7 pages
https://doi.org/10.1155/2018/1741962
Research Article

The Association between Obesity and Cognitive Function in Otherwise Healthy Premenopausal Arab Women

1Athlete Health and Performance Research, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
2School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
3School of Applied Sciences, London South Bank University, London, UK

Correspondence should be addressed to Abdulaziz Farooq; moc.ratepsa@qooraf.demmahom

Received 6 November 2017; Accepted 30 January 2018; Published 8 March 2018

Academic Editor: Sharon Herring

Copyright © 2018 Abdulaziz Farooq et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Hess and K. C. Insel, “Chemotherapy-related change in cognitive function: a conceptual model,” Oncology Nursing Forum, vol. 34, no. 5, pp. 981–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Shefer, Y. Marcus, and N. Stern, “Is obesity a brain disease?” Neuroscience & Biobehavioral Reviews, vol. 37, no. 10, pp. 2489–2503, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Yaffe, “Metabolic syndrome and cognitive decline,” Current Alzheimer Research, vol. 4, no. 2, pp. 123–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. K. Suemoto, P. Gilsanz, E. R. Mayeda, and M. M. Glymour, “Body mass index and cognitive function: the potential for reverse causation,” International Journal of Obesity, vol. 39, no. 9, pp. 1383–1389, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. A. L. Fitzpatrick, L. H. Kuller, O. L. Lopez et al., “Midlife and late-life obesity and the risk of dementia: cardiovascular health study,” Archives of Neurology, vol. 66, no. 3, pp. 336–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. T. F. Hughes, A. R. Borenstein, E. Schofield, Y. Wu, and E. B. Larson, “Association between late-life body mass index and dementia: the Kame Project,” Neurology, vol. 72, no. 20, pp. 1741–1746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Atti, K. Palmer, S. Volpato, B. Winblad, D. D. Ronchi, and L. Fratiglioni, “Late-life body mass index and dementia incidence: nine-year follow-up data from the Kungsholmen Project,” Journal of the American Geriatrics Society, vol. 56, no. 1, pp. 111–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Singh-Manoux., S. Czernichow, A. Elbaz et al., “Obesity phenotypes in midlife and cognition in early old age: the Whitehall II cohort study,” Neurology, vol. 79, no. 8, pp. 755–762, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Gunstad, R. H. Paul, R. A. Cohen, D. F. Tate, and E. Gordon, “Obesity is associated with memory deficits in young and middle-aged adults,” Eating and Weight Disorders, vol. 11, no. 1, pp. e15–e19, 2006. View at Publisher · View at Google Scholar
  10. M. Cournot, J. C. Marquie, D. Ansiau et al., “Relation between body mass index and cognitive function in healthy middle-aged men and women,” Neurology, vol. 67, no. 7, pp. 1208–1214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Kesse-Guyot, V. A. Andreeva, M. Touvier et al., “Overall and abdominal adiposity in midlife and subsequent cognitive function,” Journal of Nutrition, Health & Aging, vol. 19, no. 2, pp. 183–189, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Bocarsly, M. Fasolino, G. A. Kane et al., “Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 51, pp. 15731–15736, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. J. M. Walker and F. E. Harrison, “Shared neuropathological characteristics of obesity, type 2 diabetes and Alzheimer’s disease: impacts on cognitive decline,” Nutrients, vol. 7, no. 12, pp. 7332–7357, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Everson-Rose and J. P. Ryan, “Diabetes, obesity, and the brain: new developments in biobehavioral medicine,” Psychosomatic Medicine, vol. 77, no. 6, pp. 612–615, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Driscoll, M. A. Espeland, S. Wassertheil-Smoller et al., “Weight change and cognitive function: findings from the Women’s Health Initiative Study of Cognitive Aging,” Obesity, vol. 19, no. 8, pp. 1595–1600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Elias, P. K. Elias, L. M. Sullivan, P. A. Wolf, and R. B. D’Agostino, “Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study,” International Journal of Obesity and Related Metabolic Disorders, vol. 27, no. 2, pp. 260–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Kerwin, Y. Zhang, J. M. Kotchen et al., “The cross-sectional relationship between body mass index, waist-hip ratio, and cognitive performance in postmenopausal women enrolled in the Women’s Health Initiative,” Journal of the American Geriatrics Society, vol. 58, no. 8, pp. 1427–1432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Haring, R. Mottus, K. Koch, M. Trei, and E. Maron, “Factorial validity, measurement equivalence and cognitive performance of the Cambridge Neuropsychological Test Automated Battery (CANTAB) between patients with first-episode psychosis and healthy volunteers,” Psychological Medicine, vol. 45, no. 9, pp. 1919–1929, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. M. L. Alosco, R. Galioto, M. B. Spitznagel et al., “Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery,” American Journal of Surgery, vol. 207, no. 6, pp. 870–876, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Bergman, H. Nilsson-Ehle, and J. Sjöstrand, “Ocular changes, risk markers for eye disorders and effects of cataract surgery in elderly people: a study of an urban Swedish population followed from 70 to 97 years of age,” Acta Ophthalmologica Scandinavica, vol. 82, no. 2, pp. 166–174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. D. Henderson, M. Allerhand, N. Patton et al., “Vision and intelligence at age 83 in the Lothian Birth Cohort 1921,” Intelligence, vol. 39, no. 2-3, pp. 148–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Lindenberger and P. Ghisletta, “Cognitive and sensory declines in old age: gauging the evidence for a common cause,” Psychology and Aging, vol. 24, no. 1, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Gunstad, R. H. Paul, R. A. Cohen, D. F. Tate, M. B. Spitznagel, and E. Gordon, “Elevated body mass index is associated with executive dysfunction in otherwise healthy adults,” Comprehensive Psychiatry, vol. 48, no. 1, pp. 57–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Cherbuin, K. Sargent-Cox, M. Fraser, P. Sachdev, and K. J. Anstey, “Being overweight is associated with hippocampal atrophy: the PATH Through Life Study,” International Journal of Obesity, vol. 39, no. 10, pp. 1509–1514, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. S. E. Kanoski and T. L. Davidson, “Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity,” Physiology & Behavior, vol. 103, no. 1, pp. 59–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. L. Davis, P. D. Tomporowski, C. A. Boyle et al., “Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial,” Research Quarterly for Exercise and Sport, vol. 78, no. 5, pp. 510–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Guiney, S. J. Lucas, J. D. Cotter, and L. Machado, “Evidence cerebral blood-flow regulation mediates exercise-cognition links in healthy young adults,” Neuropsychology, vol. 29, no. 1, pp. 1–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Farooq, A. M. Knowles, J. J. Reilly, and N. Gaoua, The Association between Obesity and Cognitive Function in Healthy Premenopausal Women, International Society of Behavioral Nutrition and Physical Activity, Edinburgh, UK, 2015.