Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2011 (2011), Article ID 471947, 6 pages
http://dx.doi.org/10.1155/2011/471947
Review Article

Contribution of Cholesterol and Oxysterols in the Physiopathology of Cataract: Implication for the Development of Pharmacological Treatments

1Inserm-CIT 808, CHU de Besançon, 25030 Besançon, France
2Equipe Biochimie Métabolique et Nutritionnelle Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer), Faculté des Sciences Gabriel, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
3LCME/Département de Chimie, Université Paul Verlaine-Metz, 57012 Metz, France

Received 23 November 2010; Revised 18 January 2011; Accepted 10 February 2011

Academic Editor: Jie Jin Wang

Copyright © 2011 Anne Vejux et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Otaegui-Arrazola, M. Menéndez-Carreño, D. Ansorena, and I. Astiasarán, “Oxysterols: a world to explore,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3289–3303, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. D. W. Russell, “Oxysterol biosynthetic enzymes,” Biochimica et Biophysica Acta, vol. 1529, no. 1–3, pp. 126–135, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Björkhem, D. Lütjohann, U. Diczfalusy, L. Ståhle, G. Ahlborg, and J. Wahren, “Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation,” Journal of Lipid Research, vol. 39, no. 8, pp. 1594–1600, 1998. View at Google Scholar · View at Scopus
  4. L. Bretillon, U. Diczfalusy, I. Björkhem et al., “Cholesterol-24S-hydroxylase (CYP46A1) is specifically expressed in neurons of the neural retina,” Current Eye Research, vol. 32, no. 4, pp. 361–366, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. J. Monte, J. J. G. Marin, A. Antelo, and J. Vazquez-Tato, “Bile acids: chemistry, physiology, and pathophysiology,” World Journal of Gastroenterology, vol. 15, no. 7, pp. 804–816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. I. A. Pikuleva, “Cholesterol-metabolizing cytochromes P450,” Drug Metabolism and Disposition, vol. 34, no. 4, pp. 513–520, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. N. B. Javitt, “Cholesterol, hydroxycholesterols, and bile acids,” Biochemical and Biophysical Research Communications, vol. 292, no. 5, pp. 1147–1153, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. L. L. Smith, Cholesterol Autoxidation, Plenum Press, New York, NY, USA, 1981.
  9. W. Korytowski, G. J. Bachowski, and A. W. Girotti, “Photoperoxidation of cholesterol in homogeneous solution, isolated membranes, and cells: comparison of the 5α- and 6β-hydroperoxides as indicators of singlet oxygen intermediacy,” Photochemistry and Photobiology, vol. 56, no. 1, pp. 1–8, 1992. View at Google Scholar · View at Scopus
  10. A. W. Girotti and W. Korytowski, “Cholesterol as a singlet oxygen detector in biological systems,” Methods in Enzymology, vol. 319, pp. 85–100, 2000. View at Google Scholar · View at Scopus
  11. A. J. Brown and W. Jessup, “Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis,” Molecular Aspects of Medicine, vol. 30, no. 3, pp. 111–122, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. N. B. Javitt, “Oxysterols: functional significance in fetal development and the maintenance of normal retinal function,” Current Opinion in Lipidology, vol. 18, no. 3, pp. 283–288, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Z. Korade, L. Xu, R. Shelton, and N. A. Porter, “Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome,” Journal of Lipid Research, vol. 51, no. 11, pp. 3259–3269, 2010. View at Publisher · View at Google Scholar · View at PubMed
  14. C. A. Curcio, C. L. Millican, T. Bailey, and H. S. Kruth, “Accumulation of cholesterol with age in human Bruch's membrane,” Investigative Ophthalmology and Visual Science, vol. 42, no. 1, pp. 265–274, 2001. View at Google Scholar · View at Scopus
  15. L. Malvitte, T. Montange, C. Joffre et al., “Analogies between atherosclerosis and age-related maculopathy: expected roles of oxysterols,” Journal Francais d'Ophtalmologie, vol. 29, no. 5, pp. 570–578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. G. L. Feldman and L. S. Feldman, “New concepts of human lenticular lipids and their possible role in cataractS,” Investigative Ophthalmology, vol. 4, pp. 162–166, 1965. View at Google Scholar · View at Scopus
  17. G. F. J. M. Vrensen, “Early cortical lens opacities: a short overview,” Acta Ophthalmologica, vol. 87, no. 6, pp. 602–610, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. J. Berzelius, Lehrbuch der Chemie, Arnold, Dresden, Germany, 1825–1831.
  19. S. Zigman, T. Paxhia, G. Marinetti, and S. Girsch, “Lipids of human lens fiber cell membranes,” Current Eye Research, vol. 3, no. 7, pp. 887–896, 1984. View at Google Scholar · View at Scopus
  20. R. F. Jacob, R. J. Cenedella, and W. P. Mason, “Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes,” Journal of Biological Chemistry, vol. 274, no. 44, pp. 31613–31618, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. R. F. Jacob, R. J. Cenedella, and R. P. Mason, “Evidence for distinct cholesterol domains in fiber cell membranes from cataractous human lenses,” Journal of Biological Chemistry, vol. 276, no. 17, pp. 13573–13578, 2001. View at Google Scholar · View at Scopus
  22. R. P. Mason, T. N. Tulenko, and R. F. Jacob, “Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology,” Biochimica et Biophysica Acta, vol. 1610, no. 2, pp. 198–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. Epand, “Cholesterol in bilayers of sphingomyelin or dihydrosphingomyelin at concentrations found in ocular lens membranes,” Biophysical Journal, vol. 84, no. 5, pp. 3102–3110, 2003. View at Google Scholar · View at Scopus
  24. R. J. Cenedella, “Cholesterol and cataracts,” Survey of Ophthalmology, vol. 40, no. 4, pp. 320–337, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Wentworth Jr., J. Nieva, C. Takeuchi et al., “Evidence for ozone formation in human atherosclerotic arteries,” Science, vol. 302, no. 5647, pp. 1053–1056, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Vejux and G. Lizard, “Cytotoxic effects of oxysterols associated with human diseases: induction of cell death (apoptosis and/or oncosis), oxidative and inflammatory activities, and phospholipidosis,” Molecular Aspects of Medicine, vol. 30, no. 3, pp. 153–170, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. G. Brian and H. Taylor, “Cataract blindness—challenges for the 21st century,” Bulletin of the World Health Organization, vol. 79, no. 3, pp. 249–256, 2001. View at Google Scholar · View at Scopus
  28. L. L. Smith, “Cholesterol autoxidation 1981–1986,” Chemistry and Physics of Lipids, vol. 44, no. 2–4, pp. 87–125, 1987. View at Google Scholar · View at Scopus
  29. M. K. Pulfer, C. Taube, E. Gelfand, and R. C. Murphy, “Ozone exposure in vivo and formation of biologically active oxysterols in the lung,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 1, pp. 256–264, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. A. Dreyfus, M. P. Tolocka, S. M. Dodds, J. Dykins, and M. V. Johnston, “Cholesterol ozonolysis: kinetics, mechanism and oligomer products,” Journal of Physical Chemistry A, vol. 109, no. 28, pp. 6242–6248, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. H. Girão, M. C. Mota, J. Ramalho, and P. Pereira, “Cholesterol oxides accumulate in human cataracts,” Experimental Eye Research, vol. 66, no. 5, pp. 645–652, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. J. Duran, S. V. Pierre, P. Lesnik et al., “7-ketocholesterol inhibits Na,K-ATPase activity by decreasing expression of its α1-subunit and membrane fluidity in human endothelial cells,” Cell and Molecular Biology, vol. 56, supplement, pp. OL1434–OL1441, 2010. View at Google Scholar
  33. A. Vejux, E. Kahn, D. Dumas et al., “7-ketocholesterol favors lipid accumulation and colocalizes with Nile Red positive cytoplasmic structures formed during 7-ketocholesterol-induced apoptosis: analysis by flow cytometry, FRET biphoton spectral imaging microscopy, and subcellular fractionation,” Cytometry Part A, vol. 64, no. 2, pp. 87–100, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. D. Lichtstein, M. H. McGowan, P. Russell, and D. A. Carper, “Digitalis and digitalislike compounds down-regulate gene expession of the intracellular signaling protein 14-3-3 in rat lens,” Hypertension Research, vol. 23, supplement, pp. S51–S53, 2000. View at Google Scholar · View at Scopus
  35. M. H. McGowan, P. Russell, D. A. Carper, and D. Lichtstein, “Na+, K+-ATPase inhibitors down-regulate gene expression of the intracellular signaling protein 14-3-3 in rat lens,” Journal of Pharmacology and Experimental Therapeutics, vol. 289, no. 3, pp. 1559–1563, 1999. View at Google Scholar · View at Scopus
  36. Z. Hashim and S. Zarina, “Assessment of paraoxonase activity and lipid peroxidation levels in diabetic and senile subjects suffering from cataract,” Clinical Biochemistry, vol. 40, no. 9-10, pp. 705–709, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. Meyer, D. Parkin, F. J. Maritz, and P. H. Liebenberg, “Abnormal serum lipoprotein levels as a risk factor for the development of human lenticular opacities,” Cardiovascular Journal of South Africa, vol. 14, no. 2, pp. 60–64, 2003. View at Google Scholar · View at Scopus
  38. P. Knekt, M. Heliovaara, A. Rissanen, A. Aromaa, and R. K. Aaran, “Serum antioxidant vitamins and risk of cataract,” British Medical Journal, vol. 305, no. 6866, pp. 1392–1394, 1992. View at Google Scholar · View at Scopus
  39. C. Ohrloff, I. Korte, and I. Doffin, “Studies of lens enzyme activities in relation to cataract type and plasma constituents,” Ophthalmic Research, vol. 15, no. 3, pp. 136–139, 1983. View at Google Scholar
  40. M. C. Royer, S. Lemaine-Ewing, C. Desrumaux et al., “7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E. A specific role for α-tocopherol with consequences on cell death,” Journal of Biological Chemistry, vol. 284, no. 23, pp. 15826–15834, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. J. Wang, . Megha, and E. London, “Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function,” Biochemistry, vol. 43, no. 4, pp. 1010–1018, 2004. View at Google Scholar · View at Scopus
  42. E. Mintzer, G. Charles, and S. Gordon, “Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes,” Chemistry and Physics of Lipids, vol. 163, no. 6, pp. 586–593, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. E. Kahn, A. Vejux, and D. Dumas, “FRET multiphoton spectral imaging microscopy of 7-ketocholesterol and Nile Red in U937 monocytic cells loaded with 7-ketocholesterol,” Analytical Quantitative Cytology and Histology, vol. 26, no. 6, pp. 304–313, 2004. View at Google Scholar
  44. A. Vejux, L. Malvitte, and G. Lizard, “Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis,” Brazilian Journal of Medical and Biological Research, vol. 41, no. 7, pp. 545–556, 2008. View at Google Scholar
  45. A. Vejux, S. Guyot, T. Montange, J. M. Riedinger, E. Kahn, and G. Lizard, “Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis,” Journal of Nutritional Biochemistry, vol. 20, no. 1, pp. 45–61, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. D. Borchman, N. A. Delamere, L. A. McCauley, and C. A. Paterson, “Studies on the distribution of cholesterol, phospholipid, and protein in the human and bovine lens,” Lens and Eye Toxicity Research, vol. 6, no. 4, pp. 703–724, 1989. View at Google Scholar
  47. J. J. Duindam, G. F. J. M. Vrensen, C. Otto, and J. Greve, “Cholesterol, phospholipid, and protein changes in focal opacities in the human eye lens,” Investigative Ophthalmology and Visual Science, vol. 39, no. 1, pp. 94–103, 1998. View at Google Scholar
  48. D. Borchman and M. C. Yappert, “Lipids and the ocular lens,” Journal of Lipid Research, vol. 51, no. 9, pp. 2473–2488, 2010. View at Google Scholar
  49. M. Rujoi, J. Jin, D. Borchman, D. Tang, and M. C. Yappert, “Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1634–1642, 2003. View at Publisher · View at Google Scholar
  50. C. D. Kelman, “Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report,” American Journal of Ophthalmology, vol. 64, no. 1, pp. 23–35, 1967. View at Google Scholar
  51. T. Y. Toh, J. Morton, J. Coxon, and M. J. Elder, “Medical treatment of cataract,” Clinical and Experimental Ophthalmology, vol. 35, no. 7, pp. 664–671, 2007. View at Publisher · View at Google Scholar · View at PubMed
  52. A. Pollreisz and U. Schmidt-Erfurth, “Diabetic cataract—pathogenesis, epidemiology and treatment,” Journal of Ophthalmology, vol. 2010, Article ID 608751, 8 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed
  53. S. K. Gupta, V. K. Selvan, S. S. Agrawal, and R. Saxena, “Advances in pharmacological strategies for the prevention of cataract development,” Indian Journal of Ophthalmology, vol. 57, no. 3, pp. 175–183, 2009. View at Publisher · View at Google Scholar · View at PubMed
  54. F. R. Maxfield and G. van Meer, “Cholesterol, the central lipid of mammalian cells,” Current Opinion in Cell Biology, vol. 22, pp. 422–429, 2010. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Sanyal, J. T. Kuvin, and R. H. Karas, “Niacin and laropiprant,” Drugs of Today, vol. 46, no. 6, pp. 371–378, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. S. Katragadda, F. Rai, and R. Arora, “Dual inhibition, newer paradigms for cholesterol lowering,” American Journal of Therapeutics, vol. 17, no. 4, pp. e88–e99, 2010. View at Publisher · View at Google Scholar · View at PubMed
  57. A. Kamal-Eldin and A. Moazzami, “Plant sterols and stanols as cholesterol-lowering ingredients in functional foods,” Recent Patents on Food, Nutrition & Agriculture, vol. 1, no. 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar
  58. W. J. Griffiths and Y. Wang, “Analysis of neurosterols by GC-MS and LC-MS/MS,” Journal of Chromatography B, vol. 877, no. 26, pp. 2778–2805, 2009. View at Publisher · View at Google Scholar · View at PubMed
  59. W. J. Griffiths and J. Sjövall, “Analytical strategies for characterization of bile acid and oxysterol metabolomes,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 80–84, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. D. Lütjohann, M. Marinova, B. Schneider et al., “4β-hydroxycholesterol as a marker of CYP3A4 inhibition in vivo—effects of itraconazole in man,” International Journal of Clinical Pharmacology and Therapeutics, vol. 47, no. 12, pp. 709–715, 2009. View at Google Scholar
  61. M. S. Brown and J. L. Goldstein, “Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL,” Journal of Lipid Research, vol. 50, supplement, pp. S15–S27, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. J. Bełtowski, “Liver X receptors (LXR) as therapeutic targets in dyslipidemia,” Cardiovascular Therapeutics, vol. 26, no. 4, pp. 297–316, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. H. Ratni and M. B. Wright, “Recent progress in liver X receptor-selective modulators,” Current Opinion in Drug Discovery and Development, vol. 13, no. 4, pp. 403–413, 2010. View at Google Scholar
  64. I. R. Rodríguez and I. M. Larrayoz, “Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration,” Journal of Lipid Research, vol. 51, no. 10, pp. 2847–2862, 2010. View at Publisher · View at Google Scholar · View at PubMed
  65. S. Lordan, J. J. Mackrill, and N. M. O'Brien, “Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases,” Journal of Nutritional Biochemistry, vol. 20, no. 5, pp. 321–336, 2009. View at Publisher · View at Google Scholar · View at PubMed