Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2011, Article ID 608041, 6 pages
http://dx.doi.org/10.1155/2011/608041
Clinical Study

Age-Related Long-Term Functional Results after Riboflavin UV A Corneal Cross-Linking

1Department of Ophthalmology, University of Siena, 53100 Siena, Italy
2Department of Ophthalmology, Catholic University, Rome, Italy

Received 28 March 2011; Revised 17 May 2011; Accepted 22 May 2011

Academic Editor: Antonio Leccisotti

Copyright © 2011 Aldo Caporossi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. W. Reeves, S. Stinnett, R. A. Adelman, and N. A. Afshari, “Risk factors for progression to penetrating keratoplasty in patients with keratoconus,” American Journal of Ophthalmology, vol. 140, no. 4, pp. 607–601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Wollensak, “Crosslinking treatment of progressive keratoconus: new hope,” Current Opinion in Ophthalmology, vol. 17, no. 4, pp. 356–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Caporossi, C. Mazzotta, S. Baiocchi, and T. Caporossi, “Long-term results of riboflavin ultraviolet a corneal collagen cross-linking for keratoconus in Italy: the Siena eye cross study,” American Journal of Ophthalmology, vol. 149, no. 4, pp. 585–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Raiskup-Wolf, A. Hoyer, E. Spoerl, and L. E. Pillunat, “Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results,” Journal of Cataract and Refractive Surgery, vol. 34, no. 5, pp. 796–801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Wittig-Silva, M. Whiting, E. Lamoureux, R. G. Lindsay, L. J. Sullivan, and G. R. Snibson, “A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results,” Journal of Refractive Surgery, vol. 24, no. 7, pp. S720–S725, 2008. View at Google Scholar · View at Scopus
  6. E. Spoerl, G. Wollensak, and T. Seiler, “Increased resistance of crosslinked cornea against enzymatic digestion,” Current Eye Research, vol. 29, no. 1, pp. 35–40, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Wollensak and E. Iomdina, “Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement,” Journal of Cataract and Refractive Surgery, vol. 35, no. 3, pp. 540–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Wollensak, M. Wilsch, E. Spoerl, and T. Seiler, “Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA,” Cornea, vol. 23, no. 5, pp. 503–507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Wollensak, E. Spoerl, M. Wilsch, and T. Seiler, “Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment,” Cornea, vol. 23, no. 1, pp. 43–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” Journal of Cataract and Refractive Surgery, vol. 29, no. 9, pp. 1780–1785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Mazzotta, A. Balestrazzi, C. Traversi et al., “Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg retinal tomograph II in vivo confocal microscopy in humans,” Cornea, vol. 26, no. 4, pp. 390–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Mazzotta, C. Traversi, S. Baiocchi et al., “Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications,” American Journal of Ophthalmology, vol. 146, no. 4, pp. 527–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Wollensak and B. Redl, “Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment,” Cornea, vol. 27, no. 3, pp. 353–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Mazzotta, T. Caporossi, R. Denaro et al., “Morphological and functional correlations in riboflavin UV A corneal collagen cross-linking for keratoconus,” Acta Ophthalmologica. In press.
  15. S. Baiocchi, C. Mazzotta, D. Cerretani, T. Caporossi, and A. Caporossi, “Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium,” Journal of Cataract and Refractive Surgery, vol. 35, no. 5, pp. 893–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. S. Rabinowitz, “Keratoconus,” Survey of Ophthalmology, vol. 42, no. 4, pp. 297–319, 1998. View at Google Scholar
  17. P. Liskova, P. G. Hysi, N. Waseem, N. D. Ebenezer, S. S. Bhattacharya, and S. J. Tuft, “Evidence for keratoconus susceptibility locus on chromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers,” Archives of Ophthalmology, vol. 128, no. 9, pp. 1191–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Liskova, P. G. Hysi, N. Waseem, N. D. Ebenezer, S. S. Bhattacharya, and S. J. Tuft, “Erratum in: Evidence for keratoconus susceptibility locus on chromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers,” Archives of Ophthalmology, vol. 128, no. 11, p. 1431, 2010. View at Publisher · View at Google Scholar
  19. P. Paliwal, R. Tandon, D. Dube, P. Kaur, and A. Sharma, “Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus,” Molecular Vision, vol. 17, pp. 481–485, 2011. View at Google Scholar
  20. M. Tanwar, M. Kumar, B. Nayak et al., “VSX1 gene analysis in keratoconus,” Molecular Vision, vol. 16, pp. 2395–2401, 2010. View at Google Scholar · View at Scopus
  21. T. Koller, M. Mrochen, and T. Seiler, “Complication and failure rates after corneal crosslinking,” Journal of Cataract and Refractive Surgery, vol. 35, no. 8, pp. 1358–1362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Georgiou, C. L. Funnell, A. Cassels-Brown, and R. O'Conor, “Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients,” Eye, vol. 18, no. 4, pp. 379–383, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Wagner, J. T. Barr, and K. Zadnik, “Collaborative longitudinal evaluation of keratoconus (CLEK) study: methods and findings to date,” Contact Lens and Anterior Eye, vol. 30, no. 4, pp. 223–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Pearson, B. Soneji, N. Sarvananthan, and J. H. Sanford-Smith, “Does ethnic origin influence the incidence or severity of keratoconus?” Eye, vol. 14, no. 4, pp. 625–628, 2000. View at Google Scholar · View at Scopus
  25. D. J. Cannon and P. F. Davison, “Aging, and crosslinking in mammalian collagen,” Experimental Aging Research, vol. 3, no. 2, pp. 87–105, 1977. View at Google Scholar · View at Scopus
  26. D. J. Cannon and C. S. Foster, “Collagen crosslinking in keratoconus,” Investigative Ophthalmology and Visual Science, vol. 17, no. 1, pp. 63–65, 1978. View at Google Scholar · View at Scopus