Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012 (2012), Article ID 107053, 6 pages
http://dx.doi.org/10.1155/2012/107053
Clinical Study

Comparison of Retinal Nerve Fiber Layer Thickness Measurements in Healthy Subjects Using Fourier and Time Domain Optical Coherence Tomography

1Ophthalmology Department, Lozano Blesa University Hospital, c/ San Juan Bosco 15, 50009 Zaragoza, Spain
2Aragones Institute of Health Science, IIS Aragon, C/ Gómez Laguna 25, 50009 Zaragoza, Spain
3Ophthalmology Department, Miguel Servet University Hospital, c/ Isabel la Católica 1-3, 50009 Zaragoza, Spain

Received 3 February 2012; Accepted 6 March 2012

Academic Editor: Robert J. Zawadzki

Copyright © 2012 Isabel Pinilla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Sommer, J. Katz, H. A. Quigley et al., “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Archives of Ophthalmology, vol. 109, no. 1, pp. 77–83, 1991. View at Google Scholar · View at Scopus
  2. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark et al., “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology, vol. 103, no. 11, pp. 1889–1898, 1996. View at Google Scholar · View at Scopus
  3. E. Z. Blumenthal, J. M. Williams, R. N. Weinreb, C. A. Girkin, C. C. Berry, and L. M. Zangwill, “Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography,” Ophthalmology, vol. 107, no. 12, pp. 2278–2282, 2000. View at Google Scholar
  4. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Publisher · View at Google Scholar
  5. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Google Scholar
  6. J. G. Fujimoto, D. Huang, M. R. Hee et al., “Physical properties of optical coherence tomography,” in Optical Coherence Tomography of Ocular Diseases, J. S. Schuman, C. A. Pulido, and J. G. Fujimoto, Eds., pp. 677–688, SLACK Incorporated, Thorofare, NJ, USA, 2nd edition, 2004. View at Google Scholar
  7. D. Huang, T. Ou, J. Fujimoto et al., “Optical coherence tomography,” in Retinal Imaging, D. Huang, P. K. Kaiser, C. Y. Lowder, and E. I. Traboulsi, Eds., pp. 47–65, Mosby Elsevier, Philadelphia, Pa, USA, 2006. View at Google Scholar
  8. M. L. R. Monteiro, B. C. Leal, F. C. Moura, R. M. Vessani, and F. A. Medeiros, “Comparison of retinal nerve fibre layer measurements using optical coherence tomography versions 1 and 3 in eyes with band atrophy of the optic nerve and normal controls,” Eye, vol. 21, no. 1, pp. 16–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Progress in Retinal and Eye Research, vol. 27, no. 1, pp. 45–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Gabriele, H. Ishikawa, G. Wollstein et al., “Peripapillary nerve fiber layer thickness profile determined with high speed, ultrahigh resolution optical coherence tomography high-density scanning,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3154–3160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Optics Express, vol. 12, no. 11, pp. 2404–2422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto et al., “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology, vol. 112, no. 10, pp. 1734–1746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Wojtkowski, V. Srinivasan, T. Ko et al., “High speed, ultrahigh resolution retinal imaging using spectral/fourier domain OCT,” in 2005 Conference on Lasers and Electro-Optics, CLEO, pp. 2058–2060, usa, May 2005. View at Scopus
  14. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express, vol. 11, no. 18, pp. 2183–2189, 2003. View at Google Scholar · View at Scopus
  15. D. L. Budenz, S. T. Chang, X. Huang et al., “Reproducibility of retinal nerve fibre layer measurements using the Stratus OCT in normal and glaucomatous eyes,” Investigative Ophthalmology & Visual Science, vol. 46, no. 7, pp. 2440–2446, 2005. View at Google Scholar
  16. L. V. F. Costa-Cunha, L. P. Cunha, R. F. S. Malta, and M. L. R. Monteiro, “Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve,” American Journal of Ophthalmology, vol. 147, no. 1, pp. 56–e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Gordon-Lipkin, B. Chodkowski, D. S. Reich et al., “Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis,” Neurology, vol. 69, no. 16, pp. 1603–1609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Garcia-Martin, V. Pueyo, I. Pinilla, J. R. Ara, J. Martin, and J. Fernandez, “Fourier-domain OCT in multiple sclerosis patients: reproducibility and ability to detect retinal nerve fiber layer atrophy,” Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4124–4131, 2011. View at Google Scholar
  19. J. Gyatsho, S. Kaushik, A. Gupta, S. S. Pandav, and J. Ram, “Retinal nerve fiber layer thickness in normal, ocular hypertensive, and glaucomatous Indian eyes: an optical coherence tomography study,” Journal of Glaucoma, vol. 17, no. 2, pp. 122–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Gupta, P. Gupta, R. Singh, M. R. Dogra, and A. Gupta, “Spectral-domain cirrus high-definition optical coherence tomography is better than time-domain stratus optical coherence tomography for evaluation of macular pathologic features in uveitis,” American Journal of Ophthalmology, vol. 145, no. 6, pp. 1018–e2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Pierre-Kahn, R. Tadayoni, B. Haouchine, P. Massin, and A. Gaudric, “Comparison of optical coherence tomography models OCT1 and Stratus OCT for macular retinal thickness measurement,” British Journal of Ophthalmology, vol. 89, no. 12, pp. 1581–1585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Garcia-Martin, I. Pinilla, M. Idoipe, I. Fuertes, and V. Pueyo, “Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT,” Acta Ophthalmologica, vol. 89, no. 1, pp. e23–e29, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Garcia-Martin, I. Pinilla, E. Sancho et al., “OCT in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina. In press.
  24. Z. Wu, J. Huang, L. Dustin, and S. R. Sadda, “Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherence tomography,” Journal of Glaucoma, vol. 18, no. 3, pp. 213–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Google Scholar · View at Scopus
  26. R. Gürses-Ozden, C. Teng, R. Vessani, S. Zafar, J. M. Liebmann, and R. Ritch, “Macular and retinal nerve fiber layer thickness measurement reproducibility using optical coherence tomography (OCT-3),” Journal of Glaucoma, vol. 13, no. 3, pp. 238–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Paunescu, J. S. Schuman, L. L. Price et al., “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT,” Investigative Ophthalmology and Visual Science, vol. 45, no. 6, pp. 1716–1724, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Z. Blumenthal and R. N. Weinreb, “Assessment of the retinal nerve fiber layer in clinical trials of glaucoma neuroprotection,” Survey of Ophthalmology, vol. 45, supplement 3, pp. S305–S312, 2001. View at Google Scholar