Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012 (2012), Article ID 319728, 12 pages
http://dx.doi.org/10.1155/2012/319728
Review Article

Antivascular Endothelial Growth Factor Agents for Neovascular Age-Related Macular Degeneration

Department of Ophthalmology, Aristotle University, 54124 Thessaloniki, Greece

Received 7 August 2011; Accepted 30 September 2011

Academic Editor: Toshiaki Kubota

Copyright © 2012 Ilias Zampros et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Bhisitkul, “Vascular endothelial growth factor biology: clinical implications for ocular treatments,” British Journal of Ophthalmology, vol. 90, no. 12, pp. 1542–1547, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. E. W. Ng and A. P. Adamis, “Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration,” Canadian Journal of Ophthalmology, vol. 40, no. 3, pp. 352–368, 2005. View at Google Scholar · View at Scopus
  3. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983. View at Google Scholar · View at Scopus
  4. N. Ferrara, H. P. Gerber, and J. LeCouter, “The biology of VEGF and its receptors,” Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara, “Vascular endothelial growth factor is a secreted angiogenic mitogen,” Science, vol. 246, no. 4935, pp. 1306–1309, 1989. View at Google Scholar · View at Scopus
  6. N. Ferrara, “Vascular endothelial growth factor: basic science and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp. 581–611, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. A. Praidou, S. Androudi, P. Brazitikos, G. Karakiulakis, E. Papakonstantinou, and S. Dimitrakos, “Angiogenic growth factors and their inhibitors in diabetic retinopathy,” Current Diabetes Reviews, vol. 6, no. 5, pp. 304–312, 2010. View at Google Scholar
  8. L. P. Aiello, J. M. Northrup, B. A. Keyt, H. Takagi, and M. A. Iwamoto, “Hypoxic regulation of vascular endothelial growth factor in retinal cells,” Archives of Ophthalmology, vol. 113, no. 12, pp. 1538–1544, 1995. View at Google Scholar · View at Scopus
  9. M. J. Karkkainen, T. Mäkinen, and K. Alitalo, “Lymphatic endothelium: a new frontier of metastasis research,” Nature Cell Biology, vol. 4, no. 1, pp. E2–E5, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. B. Olofsson, E. Korpelainen, M. S. Pepper et al., “Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11709–11714, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Bauer, R. J. Bauer, Z. J. Liu, H. Chen, L. Goldstein, and O. C. Velazquez, “Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels,” Journal of Vascular Surgery, vol. 41, no. 4, pp. 699–707, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Carmeliet, V. Ferreira, G. Breier et al., “Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele,” Nature, vol. 380, no. 6573, pp. 435–439, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. N. Ferrara, “Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications,” Seminars in Oncology, vol. 29, no. 6, pp. 10–14, 2002. View at Google Scholar · View at Scopus
  14. H. Yonekura, S. Sakurai, X. Liu et al., “Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis,” Journal of Biological Chemistry, vol. 274, no. 49, pp. 35172–35178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Stacker, C. Caesar, M. E. Baldwin et al., “VEGF-D promotes the metastatic spread of tumor cells via the lymphatics,” Nature Medicine, vol. 7, no. 2, pp. 186–191, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. H. Takahashi and M. Shibuya, “The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions,” Clinical Science, vol. 109, no. 3, pp. 227–241, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. R. McColm, P. Geisen, and M. E. Hartnett, “VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP,” Molecular Vision, vol. 10, pp. 512–520, 2004. View at Google Scholar · View at Scopus
  19. X. Yi, N. Ogata, M. Komada et al., “Vascular endothelial growth factor expression in choroidal neovascularization in rats,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 235, no. 5, pp. 313–319, 1997. View at Google Scholar · View at Scopus
  20. B. A. Keyt, L. T. Berleau, H. V. Nguyen et al., “The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency,” Journal of Biological Chemistry, vol. 271, no. 13, pp. 7788–7795, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164 is proinflammatory in the diabetic retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 5, pp. 2155–2162, 2003. View at Publisher · View at Google Scholar
  22. E. Storkebaum and P. Carmeliet, “VEGF: a critical player in neurodegeneration,” Journal of Clinical Investigation, vol. 113, no. 1, pp. 14–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Jin, X. O. Mao, and D. A. Greenberg, “Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal,” Journal of Molecular Neuroscience, vol. 14, no. 3, pp. 197–203, 2000. View at Google Scholar · View at Scopus
  24. M. Sondell, G. Lundborg, and M. Kanje, “Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system,” Journal of Neuroscience, vol. 19, no. 14, pp. 5731–5740, 1999. View at Google Scholar · View at Scopus
  25. A. Papapetropoulos, G. García-Cardeña, J. A. Madri, and W. C. Sessa, “Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells,” Journal of Clinical Investigation, vol. 100, no. 12, pp. 3131–3139, 1997. View at Google Scholar · View at Scopus
  26. J. M. Rakic, V. Lambert, L. Devy et al., “Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 7, pp. 3186–3193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. S. R. Boyd, I. Zachary, U. Chakravarthy et al., “Correlation of increased vascular endothelial growth factor with neovascularization and permeability in ischemic central vein occlusion,” Archives of Ophthalmology, vol. 120, no. 12, pp. 1644–1650, 2002. View at Google Scholar · View at Scopus
  29. H. Noma, A. Minamoto, H. Funatsu et al., “Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 3, pp. 309–315, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. Kvanta, P. V. Algvere, L. Berglin, and S. Seregard, “Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor,” Investigative Ophthalmology and Visual Science, vol. 37, no. 9, pp. 1929–1934, 1996. View at Google Scholar · View at Scopus
  31. A. Praidou, E. Papakonstantinou, S. Androudi, N. Georgiadis, G. Karakiulakis, and S. Dimitrakos, “Vitreous and serum levels of vascular endothelial growth factor and platelet-derived growth factor and their correlation in patients with non-proliferative diabetic retinopathy and clinically significant macula oedema,” Acta Ophthalmologica, vol. 89, pp. 248–254, 2011. View at Google Scholar
  32. A. Praidou, I. Klangas, E. Papakonstantinou et al., “Vitreous and serum levels of platelet-derived growth factor and their correlation in patients with proliferative diabetic retinopathy,” Current Eye Research, vol. 34, no. 2, pp. 152–161, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. P. Adamis, J. W. Miller, M. T. Bernal et al., “Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy,” American Journal of Ophthalmology, vol. 118, no. 4, pp. 445–450, 1994. View at Google Scholar · View at Scopus
  34. J. W. Miller, A. P. Adamis, D. T. Shima et al., “Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model,” American Journal of Pathology, vol. 145, no. 3, pp. 574–584, 1994. View at Google Scholar · View at Scopus
  35. H. G. Blaauwgeers, G. M. Holtkamp, H. Rutten et al., “Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris: evidence for a trophic paracrine relation,” American Journal of Pathology, vol. 155, no. 2, pp. 421–428, 1999. View at Google Scholar · View at Scopus
  36. A. P. Adamis, D. T. Shima, M. J. Tolentino et al., “Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate,” Archives of Ophthalmology, vol. 114, no. 1, pp. 66–71, 1996. View at Google Scholar · View at Scopus
  37. M. G. Krzystolik, M. A. Afshari, A. P. Adamis et al., “Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment,” Archives of Ophthalmology, vol. 120, no. 3, pp. 338–346, 2002. View at Google Scholar · View at Scopus
  38. S. Amano, R. Rohan, M. Kuroki, M. Tolentino, and A. P. Adamis, “Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 39, no. 1, pp. 18–22, 1998. View at Google Scholar · View at Scopus
  39. T. Ciulla and P. Rosenfeld, “Anti-vascular endothelial growth factor therapy for neovascular ocular diseases other than age-related macular degeneration,” Current Opinion in Ophthalmology, vol. 20, no. 3, pp. 166–174, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. R. Steinbrook, “The price of sight-ranibizumab, bevacizumab, and the treatment of macular degeneration,” New England Journal of Medicine, vol. 355, no. 14, pp. 1409–1412, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. L. Fine, J. W. Berger, M. G. Maguire, and A. C. Ho, “Age-related macular degeneration,” New England Journal of Medicine, vol. 342, no. 7, pp. 483–492, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. C. Bird, N. M. Bressler, S. B. Bressler et al., “An international classification and grading system for age-related maculopathy and age-related macular degeneration: the International ARM Epidemiological Study group,” Survey of Ophthalmology, vol. 39, no. 5, pp. 367–374, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Waisbourd, A. Loewenstein, M. Goldstein, and I. Leibovitch, “Targeting vascular endothelial growth factor: a promising strategy for treating age-related macular degeneration,” Drugs and Aging, vol. 24, no. 8, pp. 643–662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. P. J. Rosenfeld, D. M. Brown, J. S. Heier et al., “Ranibizumab for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 355, no. 14, pp. 1419–1431, 2006. View at Publisher · View at Google Scholar · View at PubMed
  45. R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular degeneration,” New England Journal of Medicine, vol. 358, no. 24, pp. 2606–2617, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. P. T. De Jong, “Age-Related Macular Degeneration,” N Engl J Med., vol. 355, pp. 1474–1485, 2006. View at Google Scholar
  47. E. S. Gragoudas, A. P. Adamis, E. T. Cunningham Jr., M. Feinsod, and D. R. Guyer, “Pegaptanib for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 351, no. 27, pp. 2805–2816, 2004. View at Publisher · View at Google Scholar · View at PubMed
  48. J. R. Vingerling, I. Dielemans, A. Hofman et al., “The prevalence of age-related maculopathy in the Rotterdam study,” Ophthalmology, vol. 102, no. 2, pp. 205–210, 1995. View at Google Scholar · View at Scopus
  49. C. D. Regillo, D. M. Brown, P. Abraham et al., “Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 1,” American Journal of Ophthalmology, vol. 145, no. 2, pp. 239–248, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. A. E. Fung, G. A. Lalwani, P. J. Rosenfeld et al., “An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration,” American Journal of Ophthalmology, vol. 143, no. 4, pp. 566–583, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. N. M. Bressler, T. S. Chang, J. T. Fine, C. M. Dolan, and J. Ward, “Improved vision-related function after ranibizumab vs photodynamic therapy: a randomized clinical trial,” Archives of Ophthalmology, vol. 127, no. 1, pp. 13–21, 2009. View at Publisher · View at Google Scholar · View at PubMed
  52. D. M. Brown, M. Michels, P. K. Kaiser, J. S. Heier, J. P. Sy, and T. Ianchulev, “Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study,” Ophthalmology, vol. 116, no. 1, pp. 57–65, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. F. G. Holz, W. Amoaku, J. Donate et al., “Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study,” Ophthalmology, vol. 118, no. 4, pp. 663–671, 2011. View at Publisher · View at Google Scholar · View at PubMed
  54. D. F. Martin, M. G. Maguire, G. S. Ying, J. E. Grunwald, S. L. Fine, and G. J. Jaffe, “Ranibizumab and bevacizumab for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 364, no. 20, pp. 1897–1908, 2011. View at Publisher · View at Google Scholar · View at PubMed
  55. L. J. Singerman, H. Masonson, M. Patel et al., “Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF inhibition study in ocular neovascularisation (VISION) trial,” British Journal of Ophthalmology, vol. 92, no. 12, pp. 1606–1611, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. N. Feucht, H. Matthias, C. P. Lohmann, and M. Maier, “Pegaptanib sodium treatment in neovascular age-related macular degeneration: clinical experience in Germany,” Clinical Ophthalmology, vol. 2, pp. 253–259, 2008. View at Google Scholar
  57. M. Abouammoh and S. Sharma, “Ranibizumab versus bevacizumab for the treatment of neovascular age-related macular degeneration,” Current Opinion in Ophthalmology, vol. 22, no. 3, pp. 152–158, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. J. A. Dixon, S. C. Oliver, J. L. Olson, and N. Mandava, “VEGF Trap-Eye for the treatment of neovascular age-related macular degeneration,” Expert Opinion on Investigational Drugs, vol. 18, no. 10, pp. 1573–1580, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. Q. D. Nguyen, S. M. Shah, G. Hafiz et al., “A phase I trial of an IV-administered vascular endothelial growth factor trap for treatment in patients with choroidal neovascularization due to age-related macular degeneration,” Ophthalmology, vol. 113, no. 9, pp. 1522.e1–1522.e14, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. D. V. Do, Q. D. Nguyen, S. M. Shah et al., “An exploratory study of the safety, tolerability and bioactivity of a single intravitreal injection of vascular endothelial growth factor Trap-Eye in patients with diabetic macular oedema,” British Journal of Ophthalmology, vol. 93, no. 2, pp. 144–149, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Barik, “Development of gene-specific double-stranded RNA drugs,” Annals of Medicine, vol. 36, no. 7, pp. 540–551, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. D. Castanotto and J. J. Rossi, “The promises and pitfalls of RNA-interference-based therapeutics,” Nature, vol. 457, no. 7228, pp. 426–433, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. J. Tolentino, A. J. Brucker, J. Fosnot et al., “Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization,” Retina, vol. 24, no. 1, pp. 132–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. M. J. Tolentino, A. J. Brucker, J. Y. Fosnot et al., “Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in the nonhuman primate, laser-induced model of choroidal neovascularization,” Retina, vol. 24, no. 4, p. 660, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. A. O. Garba and S. A. Mousa, “Bevasiranib for the treatment of wet age-related macular degeneration,” Journal of Ophthalmology and Eye Diseases, vol. 2, pp. 75–83, 2010. View at Google Scholar
  67. J. Perkel, “RNAi therapeutics: a two-year update,” Science, vol. 326, pp. 454–456, 2009. View at Google Scholar
  68. D. V. Do, U. Schmidt-Erfurth, V. H. Gonzalez et al., “The da VINCI study: phase 2 primary results of VEGF trap-eye in patients with diabetic macular edema,” Ophthalmology, vol. 118, no. 9, pp. 1819–1826, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. E. T. Cunningham Jr., A. P. Adamis, M. Altaweel et al., “A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema,” Ophthalmology, vol. 112, no. 10, pp. 1747–1757, 2005. View at Publisher · View at Google Scholar · View at PubMed
  70. K. Kriechbaum, S. Michels, F. Prager et al., “Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: a prospective study,” British Journal of Ophthalmology, vol. 92, no. 4, pp. 518–522, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. K. B. Schaal, A. E. Höh, A. Scheuerle, F. Schütt, and S. Dithmar, “Bevacizumab for the treatment of macular edema secondary to retinal vein occlusion,” Ophthalmologe, vol. 104, no. 4, pp. 285–289, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus