Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012 (2012), Article ID 564627, 7 pages
http://dx.doi.org/10.1155/2012/564627
Clinical Study

Time-Domain and Spectral-Domain Optical Coherence Tomography of Retinal Nerve Fiber Layer in MS Patients and Healthy Controls

1Neuro-Ophthalmology Division, Department of Ophthalmology, Eye Care Center (VGH), The University of British Columbia, 2550 Willow Street, Vancouver, BC, Canada V5Z 3N9
2Division of Neurology, Department of Medicine, University of British Columbia, S199 Koerner Pavillion, Wesbrook Mall, Vancouver, BC, Canada V6T 2B5
3Departments of Clinical Neurosciences and Surgery and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 1N4

Received 22 January 2012; Accepted 14 March 2012

Academic Editor: Robert J. Zawadzki

Copyright © 2012 Alex P. Lange et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar · View at Scopus
  2. L. A. Paunescu, J. S. Schuman, L. L. Price et al., “Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT,” Investigative Ophthalmology and Visual Science, vol. 45, no. 6, pp. 1716–1724, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. K. S. Leung, C. Ye, R. N. Weinreb et al., “Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. A study on diagnostic agreement with Heidelberg retinal tomograph,” Ophthalmology, vol. 117, no. 2, pp. 267–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Sakamoto, M. Hangai, and N. Yoshimura, “Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases,” Ophthalmology, vol. 115, no. 6, pp. 1071–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. T. Chang, O. J. Knight, W. J. Feuer, and D. L. Budenz, “Sensitivity and specificity of time-domain versus spectral-domain optical coherence tomography in diagnosing early to moderate glaucoma,” Ophthalmology, vol. 116, no. 12, pp. 2294–2299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. O. J. Knight, R. T. Chang, W. J. Feuer, and D. L. Budenz, “Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography,” Ophthalmology, vol. 116, no. 7, pp. 1271–1277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. K. S. Leung, C. Y. L. Cheung, R. N. Weinreb et al., “Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study,” Ophthalmology, vol. 116, no. 7, pp. 1257–1263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. R. Sung, D. Y. Kim, S. B. Park, and M. S. Kook, “Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography,” Ophthalmology, vol. 116, no. 7, pp. 1264–1270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Vizzeri, R. N. Weinreb, A. O. Gonzalez-Garcia et al., “Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness,” British Journal of Ophthalmology, vol. 93, no. 6, pp. 775–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Kim, H. Ishikawa, K. R. Sung et al., “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” British Journal of Ophthalmology, vol. 93, no. 8, pp. 1057–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. O. Gonzalez-Garcia, G. Vizzeri, C. Bowd, F. A. Medeiros, L. M. Zangwill, and R. N. Weinreb, “Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements,” American Journal of Ophthalmology, vol. 147, no. 6, pp. 1067–1074, 2009. View at Google Scholar
  12. L. K. Seibold, N. Mandava, and M. Y. Kahook, “Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography,” American Journal of Ophthalmology, vol. 150, no. 6, pp. 807–814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. N. Arthur, S. D. Smith, M. M. Wright et al., “Reproducibility and agreement in evaluating retinal nerve fibre layer thickness between Stratus and Spectralis OCT,” Eye, vol. 25, no. 2, pp. 192–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. Watson, J. L. Keltner, E. K. Chin, D. Harvey, A. Nguyen, and S. S. Park, “Comparison of retinal nerve fiber layer and central macular thickness measurements among five different optical coherence tomography instruments in patients with multiple sclerosis and optic neuritis,” Journal of Neuro-Ophthalmology, vol. 31, no. 2, pp. 110–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Bock, A. U. Brandt, J. Dörr et al., “Time domain and spectral domain optical coherence tomography in multiple sclerosis: a comparative cross-sectional study,” Multiple Sclerosis, vol. 16, no. 7, pp. 893–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. H. Polman, S. C. Reingold, G. Edan et al., “Diagnostic criteria for multiple sclerosis: 2005 Revisions to the "McDonald Criteria",” Annals of Neurology, vol. 58, no. 6, pp. 840–846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. U. E. K. Wolf-Schnurrbusch, L. Ceklic, C. K. Brinkmann et al., “Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments,” Investigative Ophthalmology and Visual Science, vol. 50, no. 7, pp. 3432–3437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Giani, M. Cigada, N. Choudhry et al., “Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments,” American Journal of Ophthalmology, vol. 150, no. 6, pp. 815–824, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Pulicken, E. Gordon-Lipkin, L. J. Balcer, E. Frohman, G. Cutter, and P. A. Calabresi, “Optical coherence tomography and disease subtype in multiple sclerosis,” Neurology, vol. 69, no. 22, pp. 2085–2092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. S. Zaveri, A. Conger, A. Salter et al., “Retinal imaging by laser polarimetry and optical coherence tomography evidence of axonal degeneration in multiple sclerosis,” Archives of Neurology, vol. 65, no. 7, pp. 924–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. S. Talman, E. R. Bisker, D. J. Sackel et al., “Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis,” Annals of Neurology, vol. 67, no. 6, pp. 749–760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. N. Ratchford, M. E. Quigg, A. Conger et al., “Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies,” Neurology, vol. 73, no. 4, pp. 302–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Trip, P. G. Schlottmann, S. J. Jones et al., “Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis,” Annals of Neurology, vol. 58, no. 3, pp. 383–391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. B. Fisher, D. A. Jacobs, C. E. Markowitz et al., “Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis,” Ophthalmology, vol. 113, no. 2, pp. 324–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Costello, S. Coupland, W. Hodge et al., “Quantifying axonal loss after optic neuritis with optical coherence tomography,” Annals of Neurology, vol. 59, no. 6, pp. 963–969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Costello, W. Hodge, Y. I. Pan, E. Eggenberger, S. Coupland, and R. H. Kardon, “Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography,” Multiple Sclerosis, vol. 14, no. 7, pp. 893–905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Costello, W. Hodge, Y. I. Pan, M. Freedman, and C. DeMeulemeester, “Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes,” Journal of the Neurological Sciences, vol. 281, no. 1-2, pp. 74–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. P. D. Henderson, S. A. Trip, P. G. Schlottmann et al., “A preliminary longitudinal study of the retinal nerve fiber layer in progressive multiple sclerosis,” Journal of Neurology, vol. 257, no. 7, pp. 1083–1091, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. P. D. Henderson, S. A. Trip, P. G. Schlottmann et al., “An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography,” Brain, vol. 131, no. 1, pp. 277–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. F. M. Rauscher, N. Sekhon, W. J. Feuer, and D. L. Budenz, “Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography,” Journal of Glaucoma, vol. 18, no. 7, pp. 501–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Skaf, A. B. Bernardes, J. A. Cardillo et al., “Retinal nerve fibre layer thickness profile in normal eyes using third-generation optical coherence tomography,” Eye, vol. 20, no. 4, pp. 431–439, 2006. View at Publisher · View at Google Scholar · View at Scopus