Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2012, Article ID 783163, 11 pages
http://dx.doi.org/10.1155/2012/783163
Review Article

Lymphatics and Lymphangiogenesis in the Eye

1Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
2Functional and Molecular Imaging Center and Department of Radiology, Brigham and Womenʼs Hospital, Harvard Medical School, Boston, MA 02115, USA

Received 15 August 2011; Revised 20 November 2011; Accepted 21 November 2011

Academic Editor: Claus Cursiefen

Copyright © 2012 Shintaro Nakao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Norrmén, T. Tammela, T. V. Petrova, and K. Alitalo, “Biological basis of therapeutic lymphangiogenesis,” Circulation, vol. 123, no. 12, pp. 1335–1351, 2011. View at Publisher · View at Google Scholar · View at PubMed
  2. F. Sabin, “On the origin of the lymphatic system from the veins and the development of the lymphatic hearts and thoracic duct in the pig,” American Journal of Anatomy, vol. 1, pp. 367–391, 1902. View at Google Scholar
  3. S. Breiteneder-Geleff, A. Soleiman, H. Kowalski et al., “Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium,” American Journal of Pathology, vol. 154, no. 2, pp. 385–394, 1999. View at Google Scholar · View at Scopus
  4. S. Banerji, J. Ni, S. X. Wang et al., “LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan,” Journal of Cell Biology, vol. 144, no. 4, pp. 789–801, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Skobe, T. Hawighorst, D. G. Jackson et al., “Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis,” Nature Medicine, vol. 7, no. 2, pp. 192–198, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. P. Baluk, T. Tammela, E. Ator et al., “Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 247–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Gausas, R. S. Gonnering, B. N. Lemke, R. K. Dortzbach, and D. D. Sherman, “Identification of human orbital lymphatics,” Ophthalmic Plastic and Reconstructive Surgery, vol. 15, no. 4, pp. 252–259, 1999. View at Google Scholar
  8. M. Shibuya and L. Claesson-Welsh, “Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis,” Experimental Cell Research, vol. 312, no. 5, pp. 549–560, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Wolf, “Current status of anti-vascular endothelial growth factor therapy in Europe,” Japanese Journal of Ophthalmology, vol. 52, no. 6, pp. 433–439, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. Joukov, T. Sorsa, V. Kumar et al., “Proteolytic processing regulates receptor specificity and activity of VEGF-C,” EMBO Journal, vol. 16, no. 13, pp. 3898–3911, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. A. Stacker, K. Stenvers, C. Caesar et al., “Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers,” Journal of Biological Chemistry, vol. 274, no. 45, pp. 32127–32136, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. He, I. Rajantie, K. Pajusola et al., “Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels,” Cancer Research, vol. 65, no. 11, pp. 4739–4746, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. Shimizu, H. Kubo, K. Yamaguchi et al., “Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer,” Cancer Science, vol. 95, no. 4, pp. 328–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Kajiya and M. Detmar, “An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation,” Journal of Investigative Dermatology, vol. 126, no. 4, pp. 919–921, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. D. Kerjaschki, N. Huttary, I. Raab et al., “Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants,” Nature Medicine, vol. 12, no. 2, pp. 230–234, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. J. Albuquerque, T. Hayashi, W. G. Cho et al., “Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth,” Nature Medicine, vol. 15, no. 9, pp. 1023–1030, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. Cursiefen, K. Maruyama, D. G. Jackson, J. W. Streilein, and F. E. Kruse, “Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation,” Cornea, vol. 25, no. 4, pp. 443–447, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. Ling, H. Lin, L. Liang et al., “Development of new lymphatic vessels in alkali-burned corneas,” Acta Ophthalmologica, vol. 87, no. 3, pp. 315–322, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. A. Gimbrone Jr., R. S. Cotran, S. B. Leapman, and J. Folkman, “Tumor growth and neovascularization: an experimental model using the rabbit cornea,” Journal of the National Cancer Institute, vol. 52, no. 2, pp. 413–427, 1974. View at Google Scholar · View at Scopus
  20. Y. Cao, S. Lim, H. Ji et al., “Mouse corneal lymphangiogenesis model,” Nature Protocols, vol. 6, no. 6, pp. 817–826, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. M. Björndahl, R. Cao, L. J. Nissen et al., “Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15593–15598, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. A. Björndahl, R. Cao, J. B. Burton et al., “Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis,” Cancer Research, vol. 65, no. 20, pp. 9261–9268, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. F. Bock, J. Onderka, T. Dietrich et al., “Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis,” Investigative Ophthalmology and Visual Science, vol. 48, no. 6, pp. 2545–2552, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. C. Cursiefen, L. Chen, L. P. Borges et al., “VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment,” Journal of Clinical Investigation, vol. 113, no. 7, pp. 1040–1050, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Nakao, K. Maruyama, S. Zandi et al., “Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains,” The FASEB Journal, vol. 24, no. 2, pp. 504–513, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. E. S. Chung, S. K. Chauhan, Y. Jin et al., “Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands,” American Journal of Pathology, vol. 175, no. 5, pp. 1984–1992, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. Cao, M. A. Björndahl, P. Religa et al., “PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis,” Cancer Cell, vol. 6, no. 4, pp. 333–345, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. R. Cao, M. A. Björndahl, M. I. Gallego et al., “Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action,” Blood, vol. 107, no. 9, pp. 3531–3536, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. H. Kubo, R. Cao, E. Bräkenhielm, T. Mäkinen, Y. Cao, and K. Alitalo, “Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8868–8873, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. L. K. Chang, G. Garcia-Cardeña, F. Farnebo et al., “Dose-dependent response of FGF-2 for lymphangiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11658–11663, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. S. Nakao, S. Zandi, Y. Hata et al., “Blood vessel endothelial vegfr-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis,” Blood, vol. 117, no. 3, pp. 1081–1090, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. K. Watari, S. Nakao, A. Fotovati et al., “Role of macrophages in inflammatory lymphangiogenesis: enhanced production of vascular endothelial growth factor C and D through NF-κB activation,” Biochemical and Biophysical Research Communications, vol. 377, no. 3, pp. 826–831, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Nakao, K. Noda, S. Zandi et al., “VAP-1-mediated M2 macrophage infiltration underlies IL-1beta- but not VEGF-A-induced lymph- and angiogenesis,” The American Journal of Pathology, vol. 178, pp. 1913–1921, 2011. View at Google Scholar
  34. B. Regenfuß, J. Onderka, F. Bock, D. Hos, K. Maruyama, and C. Cursiefen, “Genetic heterogeneity of lymphangiogenesis in different mouse strains,” American Journal of Pathology, vol. 177, no. 1, pp. 501–510, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Nakao, S. Zandi, S. Faez, R. I. Kohno, and A. Hafezi-Moghadam, “Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots,” The FASEB Journal, vol. 26, no. 2, pp. 808–817, 2012. View at Google Scholar
  36. S. Nakao, T. Kuwano, C. Tsutsumi-Miyahara et al., “Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1β-induced neovascularization and tumor growth,” Journal of Clinical Investigation, vol. 115, no. 11, pp. 2979–2991, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. Nakao, Y. Hata, M. Miura et al., “Dexamethasone inhibits interleukin-1β-induced corneal neovascularization: role of nuclear factor-κB-activated stromal cells in inflammatory angiogenesis,” American Journal of Pathology, vol. 171, no. 3, pp. 1058–1065, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. Yoshida, A. Yoshida, T. Ishibashi, S. G. Elner, and V. M. Elner, “Role of MCP-1 and MIP-1α in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization,” Journal of Leukocyte Biology, vol. 73, no. 1, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. C. Tsutsumi, K. H. Sonoda, K. Egashira et al., “The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization,” Journal of Leukocyte Biology, vol. 74, no. 1, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Sakurai, A. Anand, B. K. Ambati, N. van Rooijen, and J. Ambati, “Macrophage depletion inhibits experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3578–3585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Maruyama, M. Ii, C. Cursiefen et al., “Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages,” Journal of Clinical Investigation, vol. 115, no. 9, pp. 2363–2372, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. Jalkanen and M. Salmi, “VAP-1 and CD73, endothelial cell surface enzymes in leukocyte extravasation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 1, pp. 18–26, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. K. Noda, S. Nakao, S. Zandi, V. Engelstädter, Y. Mashima, and A. Hafezi-Moghadam, “Vascular adhesion protein-1 regulates leukocyte transmigration rate in the retina during diabetes,” Experimental Eye Research, vol. 89, no. 5, pp. 774–781, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Sica, P. Allavena, and A. Mantovani, “Cancer related inflammation: the macrophage connection,” Cancer Letters, vol. 267, no. 2, pp. 204–215, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. Cursiefen, K. Maruyama, F. Bock et al., “Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes,” Journal of Experimental Medicine, vol. 208, no. 5, pp. 1083–1092, 2011. View at Publisher · View at Google Scholar · View at PubMed
  47. C. Cursiefen, C. Rummelt, A. Jünemann et al., “Absence of blood and lymphatic vessels in the developing human cornea,” Cornea, vol. 25, no. 6, pp. 722–726, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. T. R. Wuest and D. J. Carr, “VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis,” Journal of Experimental Medicine, vol. 207, no. 1, pp. 101–115, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. Goyal, S. K. Chauhan, J. El Annan, N. Nallasamy, Q. Zhang, and R. Dana, “Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity?” Archives of Ophthalmology, vol. 128, no. 7, pp. 819–824, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. T. Dietrich, F. Bock, D. Yuen et al., “Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation,” Journal of Immunology, vol. 184, no. 2, pp. 535–539, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. Y. H. Yucel, M. G. Johnston, T. Ly et al., “Identification of lymphatics in the ciliary body of the human eye: a novel "uveolymphatic" outflow pathway,” Experimental Eye Research, vol. 89, no. 5, pp. 810–819, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. L. M. Heindl, C. Hofmann-Rummelt, W. Adler et al., “Tumor-associated lymphangiogenesis in the development of conjunctival squamous cell carcinoma,” Ophthalmology, vol. 117, no. 4, pp. 649–658, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. L. M. Heindl, T. N. Hofmann, W. Adler et al., “Intraocular tumor-associated lymphangiogenesis a novel prognostic factor for ciliary body melanomas with extraocular extension?” Ophthalmology, vol. 117, no. 2, pp. 334–342, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. Yamagami and M. R. Dana, “The critical role of lymph nodes in corneal alloimmunization and graft rejection,” Investigative Ophthalmology and Visual Science, vol. 42, no. 6, pp. 1293–1298, 2001. View at Google Scholar · View at Scopus
  55. L. Chen, P. Hamrah, C. Cursiefen et al., “Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity,” Nature Medicine, vol. 10, pp. 813–815, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. Singh, “Conjunctival lymphatic system,” Journal of Cataract and Refractive Surgery, vol. 29, no. 4, pp. 632–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. H. B. Collin, “Endothelial cell lined lymphatics in the vascularized rabbit cornea,” Investigative Ophthalmology, vol. 5, no. 4, pp. 337–354, 1966. View at Google Scholar · View at Scopus
  58. S. Camelo, J. Kezic, A. Shanley, P. Rigby, and P. G. McMenamin, “Antigen from the anterior chamber of the eye travels in a soluble form to secondary lymphoid organs via lymphatic and vascular routes,” Investigative Ophthalmology and Visual Science, vol. 47, no. 3, pp. 1039–1046, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. S. Camelo, L. Lajavardi, A. Bochot et al., “Drainage of fluorescent liposomes from the vitreous to cervical lymph nodes via conjunctival lymphatics,” Ophthalmic Research, vol. 40, no. 3-4, pp. 145–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. T. Karpanen and K. Alitalo, “Molecular biology and pathology of lymphangiogenesis,” Annual Review of Pathology: Mechanisms of Disease, vol. 3, pp. 367–397, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. Klein, B. E. K. Klein, and S. E. Moss, “The wisconsin epidemiologic study of diabetic retinopathy. IV. Diabetic macular edema,” Ophthalmology, vol. 91, no. 12, pp. 1464–1474, 1984. View at Google Scholar · View at Scopus
  62. A. Gandorfer, E. M. Messmer, M. W. Ulbig, and A. Kampik, “Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane,” Retina, vol. 20, no. 2, pp. 126–133, 2000. View at Google Scholar · View at Scopus
  63. J. F. Arevalo, M. Maia, H. W. Flynn Jr. et al., “Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 92, no. 2, pp. 213–216, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. J. B. Jonas, I. Kreissig, A. Sofker, and R. F. Degenring, “Intravitreal injection of triamcinolone for diffuse diabetic macular edema,” Archives of Ophthalmology, vol. 121, no. 1, pp. 57–61, 2003. View at Google Scholar · View at Scopus
  65. C. A. Wilson, B. A. Berkowitz, Y. Sato, N. Ando, J. T. Handa, and E. De Juan, “Treatment with intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation,” Archives of Ophthalmology, vol. 110, no. 8, pp. 1155–1159, 1992. View at Google Scholar · View at Scopus
  66. Q. D. Nguyen, S. Tatlipinar, S. M. Shah et al., “Vascular endothelial growth factor is a critical stimulus for diabetic macular edema,” American Journal of Ophthalmology, vol. 142, no. 6, pp. 961–e4, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. T. Sakamoto, M. Miyazaki, T. Hisatomi et al., “Triamcinolone-assisted pars plana vitrectomy improves the surgical procedures and decreases the postoperative blood-ocular barrier breakdown,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 240, no. 6, pp. 423–429, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. Y. S. Yoon, T. Murayama, E. Gravereaux et al., “VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 717–725, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Grimaldo, M. Garcia, H. Zhang, and L. Chen, “Specific role of lymphatic marker podoplanin in retinal pigment epithelial cells,” Lymphology, vol. 43, no. 3, pp. 128–134, 2010. View at Google Scholar · View at Scopus
  70. M. E. De Stefano and E. Mugnaini, “Fine structure of the choroidal coat of the avian eye: lymphatic vessels,” Investigative Ophthalmology and Visual Science, vol. 38, no. 6, pp. 1241–1260, 1997. View at Google Scholar · View at Scopus
  71. W. Krebs and I. P. Krebs, “Ultrastructural evidence for lymphatic capillaries in the primate choroid,” Archives of Ophthalmology, vol. 106, no. 11, pp. 1615–1616, 1988. View at Google Scholar · View at Scopus
  72. A. Sugita and T. Inokuchi, “Lymphatic sinus-like structures in choroid,” Japanese Journal of Ophthalmology, vol. 36, no. 4, pp. 436–442, 1992. View at Google Scholar · View at Scopus
  73. F. Schroedl, A. Brehmer, W. L. Neuhuber, F. E. Kruse, C. A. May, and C. Cursiefen, “The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)—positive macrophages,” Investigative Ophthalmology and Visual Science, vol. 49, no. 12, pp. 5222–5229, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. H. Xu, M. Chen, D. M. Reid, and J. V. Forrester, “LYVE-1-positive macrophages are present in normal murine eyes,” Investigative Ophthalmology and Visual Science, vol. 48, no. 5, pp. 2162–2171, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. Y. Ikeda, Y. Yonemitsu, M. Onimaru et al., “The regulation of vascular endothelial growth factors (VEGF-A, -C, and -D) expression in the retinal pigment epithelium,” Experimental Eye Research, vol. 83, no. 5, pp. 1031–1040, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. W. Streilein, “Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation,” Journal of Leukocyte Biology, vol. 74, no. 2, pp. 179–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. S. A. Stacker, M. E. Baldwin, and M. G. Achen, “The role of tumor lymphangiogenesis in metastatic spread,” The FASEB Journal, vol. 16, no. 9, pp. 922–934, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Clarijs, L. Schalkwijk, D. J. Ruiter, and R. M. de Waal, “Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma,” Investigative Ophthalmology and Visual Science, vol. 42, no. 7, pp. 1422–1428, 2001. View at Google Scholar
  79. K. Birke, E. Lütjen-Drecoll, D. Kerjaschki, and M. T. Birke, “Expression of podoplanin and other lymphatic markers in the human anterior eye segment,” Investigative Ophthalmology and Visual Science, vol. 51, no. 1, pp. 344–354, 2010. View at Publisher · View at Google Scholar · View at PubMed
  80. S. Breiteneder-Geleff, K. Matsui, A. Soleiman et al., “Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis,” American Journal of Pathology, vol. 151, no. 4, pp. 1141–1152, 1997. View at Google Scholar · View at Scopus
  81. A. Bill, “Blood circulation and fluid dynamics in the eye,” Physiological Reviews, vol. 55, no. 3, pp. 383–417, 1975. View at Google Scholar · View at Scopus
  82. J. J. McGetrick, D. G. Wilson, R. K. Dortzbach, P. L. Kaufman, and B. N. Lemke, “A search for lymphatic drainage of the monkey orbit,” Archives of Ophthalmology, vol. 107, no. 2, pp. 255–260, 1989. View at Google Scholar · View at Scopus
  83. A. J. Dickinson and R. E. Gausas, “Orbital lymphatics: do they exist?” Eye, vol. 20, no. 10, pp. 1145–1148, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. D. D. Sherman, R. S. Gonnering, I. H. Wallow et al., “Identification of orbital lymphatics: enzyme histochemical light microscopic and electron microscopic studies,” Ophthalmic Plastic and Reconstructive Surgery, vol. 9, no. 3, pp. 153–169, 1993. View at Google Scholar
  85. H. E. Killer, H. R. Laeng, and P. Groscurth, “Lymphatic capillaries in the meninges of the human optic nerve,” Journal of Neuro-Ophthalmology, vol. 19, no. 4, pp. 222–228, 1999. View at Google Scholar · View at Scopus