Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2013, Article ID 185825, 7 pages
http://dx.doi.org/10.1155/2013/185825
Research Article

Essential Role of Thioredoxin 2 in Mitigating Oxidative Stress in Retinal Epithelial Cells

1Department of Chemistry and Bioengineering, Faculty of Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
2School of Medicine, Tohoku University, 2-1 Seiryou-machi, Sendai 980-8574, Japan
3Graduate School of Medicine, Tohoku University, 2-1 Seiryou-machi, Sendai 980-8574, Japan
4Clinical Research, Innovation and Education Center, Tohoku University Hospital, 2-1 Seiryou-machi, Sendai 980-8574, Japan
5Laboratory of Visual Neuroscience, Department of Chemistry and Bioengineering, Faculty of Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

Received 7 June 2013; Revised 6 August 2013; Accepted 19 September 2013

Academic Editor: Yoshihiko Usui

Copyright © 2013 Eriko Sugano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. LaVail, D. Yasumura, M. T. Matthes et al., “Protection of mouse photoreceptors by survival factors in retinal degenerations,” Investigative Ophthalmology and Visual Science, vol. 39, no. 3, pp. 592–602, 1998. View at Google Scholar · View at Scopus
  2. E. G. Faktorovich, R. H. Steinberg, D. Yasumura, M. T. Matthes, and M. M. LaVail, “Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat,” Journal of Neuroscience, vol. 12, no. 9, pp. 3554–3567, 1992. View at Google Scholar · View at Scopus
  3. E. Sugano, H. Tomita, S. Ishiguro, H. Isago, and M. Tamai, “Nitric oxide-induced accumulation of lipofuscin-like materials is caused by inhibition of cathepsin S,” Current Eye Research, vol. 31, no. 7-8, pp. 607–616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Sugano, H. Tomita, T. Abe, A. Yamashita, and M. Tamai, “Comparative study of cathepsins D and S in rat IPE and RPE cells,” Experimental Eye Research, vol. 77, no. 2, pp. 203–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Saari, “Vitamin A metabolism in rod and cone visual cycles,” Annual Review of Nutrition, vol. 32, pp. 125–145, 2012. View at Publisher · View at Google Scholar
  6. S. Beatty, H. Koh, M. Phil, D. Henson, and M. Boulton, “The role of oxidative stress in the pathogenesis of age-related macular degeneration,” Survey of Ophthalmology, vol. 45, no. 2, pp. 115–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Lu, B. C. Oveson, Y. Jo et al., “Increased expression of glutathione peroxidase 4 strongly protects retina from oxidative damage,” Antioxidants and Redox Signaling, vol. 11, no. 4, pp. 715–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Sugano, H. Isago, N. Murayama, M. Tamai, and H. Tomita, “Different anti-oxidant effects of thioredoxin 1 and thioredoxin 2 in retinal epithelial cells,” Cell Structure and Function, vol. 38, no. 1, pp. 81–88, 2013. View at Google Scholar
  9. C. M. Grant, “Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions,” Molecular Microbiology, vol. 39, no. 3, pp. 533–541, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Choudhary, T. Xiao, S. Srivastava et al., “Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells,” Toxicology and Applied Pharmacology, vol. 204, no. 2, pp. 122–134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. C. Laurent, E. C. Moore, and P. Reichard, “Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B,” The Journal of Biological Chemistry, vol. 239, pp. 3436–3444, 1964. View at Google Scholar · View at Scopus
  12. A. Holmgren, “Thioredoxin,” Annual Review of Biochemistry, vol. 54, pp. 237–271, 1985. View at Google Scholar · View at Scopus
  13. A. Holmgren, “Thioredoxin and glutaredoxin systems,” Journal of Biological Chemistry, vol. 264, no. 24, pp. 13963–13966, 1989. View at Google Scholar · View at Scopus
  14. C. H. Lillig and A. Holmgren, “Thioredoxin and related molecules—from biology to health and disease,” Antioxidants and Redox Signaling, vol. 9, no. 1, pp. 25–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Abe, E. Sugano, Y. Saigo, and M. Tamai, “Interleukin-1β and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules,” Investigative Ophthalmology and Visual Science, vol. 44, no. 9, pp. 4097–4104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Sugano, H. Tomita, S. Ishiguro, T. Abe, and M. Tamai, “Establishment of effective methods for transducing genes into iris pigment epithelial cells by using adeno-associated virus type 2,” Investigative Ophthalmology and Visual Science, vol. 46, no. 9, pp. 3341–3348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Grimm, A. Kern, M. Pawlita, F. K. Ferrari, R. J. Samulski, and J. A. Kleinschmidt, “Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2,” Gene Therapy, vol. 6, no. 7, pp. 1322–1330, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Nakashima, W. Liu, A. A. Akhand et al., “4-Hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions,” Molecular Aspects of Medicine, vol. 24, no. 4-5, pp. 231–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. F. J. Romero, F. Bosch-Morell, M. J. Romero et al., “Lipid peroxidation products and antioxidants in human disease,” Environmental Health Perspectives, vol. 106, supplement 5, pp. 1229–1234, 1998. View at Google Scholar · View at Scopus
  20. R. J. Kapphahn, B. M. Giwa, K. M. Berg et al., “Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets,” Experimental Eye Research, vol. 83, no. 1, pp. 165–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Louie, R. J. Kapphahn, and D. A. Ferrington, “Proteasome function and protein oxidation in the aged retina,” Experimental Eye Research, vol. 75, no. 3, pp. 271–284, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Gouazé, M. Mirault, S. Carpentier, R. Salvayre, T. Levade, and N. Andrieu-Abadie, “Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells,” Molecular Pharmacology, vol. 60, no. 3, pp. 488–496, 2001. View at Google Scholar · View at Scopus
  23. O. Cuvillier, “Sphingosine in apoptosis signaling,” Biochimica et Biophysica Acta, vol. 1585, no. 2-3, pp. 153–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. C. E. Abrahan, G. E. Miranda, D. L. Agnolazza, L. E. Politi, and N. P. Rotstein, “Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors,” Investigative Ophthalmology and Visual Science, vol. 51, no. 2, pp. 1171–1180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. I. Gudz, K. Tserng, and C. L. Hoppel, “Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide,” Journal of Biological Chemistry, vol. 272, no. 39, pp. 24154–24158, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. S. O. Abarikwu, A. B. Pant, and E. O. Farombi, “4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells,” Basic and Clinical Pharmacology and Toxicology, vol. 110, no. 5, pp. 441–448, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. J. Jang, J. Kim, N. J. Kang, K. W. Lee, and H. J. Lee, “Piceatannol attenuates 4-hydroxynonenal-induced apoptosis of PC12 cells by blocking activation of c-jun N-terminal kinase,” Annals of the New York Academy of Sciences, vol. 1171, pp. 176–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. L. Miranda, R. L. Reed, H. C. Kuiper, S. Alber, and J. F. Stevens, “Ascorbic acid promotes detoxification and elimination of 4-hydroxy-2(E)-nonenal in human monocytic THP-1 cells,” Chemical Research in Toxicology, vol. 22, no. 5, pp. 863–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Salminen, A. Kauppinen, J. M. T. Hyttinen, E. Toropainen, and K. Kaarniranta, “Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization,” Molecular Medicine, vol. 16, no. 11-12, pp. 535–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. O. Dean and M. Tytell, “Hsp25 and -90 immunoreactivity in the normal rat eye,” Investigative Ophthalmology and Visual Science, vol. 42, no. 12, pp. 3031–3040, 2001. View at Google Scholar · View at Scopus
  31. T. Scheibel and J. Buchner, “The Hsp90 complex—a super-chaperone machine as a novel drug target,” Biochemical Pharmacology, vol. 56, no. 6, pp. 675–682, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Morishima, “Control of cell fate by Hsp70: more than an evanescent meeting,” Journal of Biochemistry, vol. 137, no. 4, pp. 449–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Abravaya, M. P. Myers, S. P. Murphy, and R. I. Morimoto, “The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression,” Genes and Development, vol. 6, no. 7, pp. 1153–1164, 1992. View at Google Scholar · View at Scopus
  34. J. Zou, Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy, “Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1,” Cell, vol. 94, no. 4, pp. 471–480, 1998. View at Google Scholar · View at Scopus
  35. K. Kaarniranta, T. Ryhänen, H. M. Karjalainen et al., “Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells,” Neuroscience Letters, vol. 382, no. 1-2, pp. 185–190, 2005. View at Publisher · View at Google Scholar · View at Scopus