Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2013, Article ID 397680, 5 pages
http://dx.doi.org/10.1155/2013/397680
Research Article

Use of Fourier-Domain Optical Coherence Tomography to Evaluate Anterior Stromal Opacities in Donor Corneas

1Center for Ophthalmic Optics & Lasers, Casey Eye Institute and Department of Ophthalmology, Oregon Health & Science University, 3375 SW Terwilliger Boulevard, Portland, OR 97239-4197, USA
2Lions VisionGift, Portland, OR 971214-5303, USA

Received 6 November 2012; Accepted 8 March 2013

Academic Editor: Andrew G. Lee

Copyright © 2013 Matthew R. Bald et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Eye Bank Association of America, Medical Standards, EBAA, 2011.
  2. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Google Scholar · View at Scopus
  3. E. A. Swanson, J. A. Izatt, M. R. Hee et al., “In vivo retinal imaging by optical coherence tomography,” Optics Letters, vol. 18, no. 21, pp. 1864–1866, 1993. View at Google Scholar · View at Scopus
  4. M. R. Hee, J. A. Izatt, E. A. Swanson et al., “Optical coherence tomography of the human retina,” Archives of Ophthalmology, vol. 113, no. 3, pp. 325–332, 1995. View at Google Scholar · View at Scopus
  5. J. A. Izatt, M. R. Hee, E. A. Swanson et al., “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Archives of Ophthalmology, vol. 112, no. 12, pp. 1584–1589, 1994. View at Google Scholar · View at Scopus
  6. T. Simpson and D. Fonn, “Optical coherence tomography of the anterior segment,” Ocular Surface, vol. 6, no. 3, pp. 117–127, 2008. View at Google Scholar · View at Scopus
  7. S. Radhakrishnan, A. M. Rollins, J. E. Roth et al., “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Archives of Ophthalmology, vol. 119, no. 8, pp. 1179–1185, 2001. View at Google Scholar · View at Scopus
  8. C. Wirbelauer and D. T. Pham, “Continuous monitoring of corneal thickness changes during LASIK with online optical coherence pachymetry,” Journal of Cataract and Refractive Surgery, vol. 30, no. 12, pp. 2559–2568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. J. Maldonado, L. Ruiz-Oblitas, J. M. Munuera, D. Aliseda, A. García-Layana, and J. Moreno-Montañés, “Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism,” Ophthalmology, vol. 107, no. 1, pp. 81–87, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wang, J. Thomas, I. Cox, and A. Rollins, “Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis,” Investigative Ophthalmology and Visual Science, vol. 45, no. 6, pp. 1812–1816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Lin, Y. Li, M. Tang et al., “Screening for previous refractive surgery in eye bank corneas by using optical coherence tomography,” Cornea, vol. 26, no. 5, pp. 594–599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Priglinger, A. S. Neubauer, C. A. May et al., “Optical coherence tomography for the detection of laser in situ keratomileusis in donor corneas,” Cornea, vol. 22, no. 1, pp. 46–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. R. Kanavi, M. A. Javadi, T. Chamani, and A. Javadi, “Screening of donated whole globes for photorefractive keratectomy,” Cornea, vol. 30, no. 11, pp. 1260–1263, 2011. View at Google Scholar
  14. J. S. Brown, D. Wang, X. Li et al., “In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty,” Cornea, vol. 27, no. 7, pp. 802–810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Tang, D. Ward, J. L. Ramos et al., “Measurements of microkeratome cuts in donor corneas with ultrasound and optical coherence tomography,” Cornea, vol. 31, no. 2, pp. 145–149, 2012. View at Publisher · View at Google Scholar
  16. A. S. Neubauer, S. G. Priglinger, M. J. Thiel, C. A. May, and U. C. Welge-Lüen, “Sterile structural imaging of donor cornea by optical coherence tomography,” Cornea, vol. 21, no. 5, pp. 490–494, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology, vol. 114, no. 7, pp. 1278–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. R. L. Armour, P. J. Ousley, J. Wall, K. Hoar, C. Stoeger, and M. A. Terry, “Endothelial keratoplasty using donor tissue not suitable for full-thickness penetrating keratoplasty,” Cornea, vol. 26, no. 5, pp. 515–519, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. P. M. Phillips, M. A. Terry, N. Shamie et al., “Descemet's stripping automated endothelial keratoplasty (DSAEK) using corneal donor tissue not acceptable for use in penetrating keratoplasty as a result of anterior stromal scars, pterygia, and previous corneal refractive surgical procedures,” Cornea, vol. 28, no. 8, pp. 871–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. F. W. Price and M. O. Price, “Adult keratoplasty: has the prognosis improved in the last 25 years?” International Ophthalmology, vol. 28, no. 3, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Shimmura, “Component surgery of the cornea,” Cornea, vol. 23, no. 8, pp. S31–S35, 2004. View at Google Scholar · View at Scopus
  22. T. Kawakita, M. Kawashima, Y. Satake, S. Den, M. Tomita, and J. Shimazaki, “Achievements and future problems with component surgery of the cornea,” Cornea, vol. 26, no. 9, supplement 1, pp. S59–S64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. B. Vajpayee, N. Vasudendra, J. S. Titiyal, R. Tandon, N. Sharma, and R. Sinha, “Automated lamellar therapeutic keratoplasty (ALTK) in the treatment of anterior to mid-stromal corneal pathologies,” Acta Ophthalmologica Scandinavica, vol. 84, no. 6, pp. 771–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. Saini, A. K. Jain, J. Sukhija, and V. Saroha, “Indications and outcome of optical partial thickness lamellar keratoplasty,” Cornea, vol. 22, no. 2, pp. 111–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Shimmura and K. Tsubota, “Deep anterior lamellar keratoplasty,” Current Opinion in Ophthalmology, vol. 17, no. 4, pp. 349–355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. B. Vajpayee, J. Tyagi, N. Sharma, N. Kumar, V. Jhanji, and J. S. Titiyal, “Deep anterior lamellar keratoplasty by big-bubble technique for treatment corneal stromal opacities,” American Journal of Ophthalmology, vol. 143, no. 6, pp. 954.e2–957.e2, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. S. Chen, M. A. Terry, N. Shamie, K. L. Hoar, and D. J. Friend, “Descemet-stripping automated endothelial keratoplasty: six-month results in a prospective study of 100 eyes,” Cornea, vol. 27, no. 5, pp. 514–520, 2008. View at Publisher · View at Google Scholar · View at Scopus