Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2013, Article ID 686587, 5 pages
http://dx.doi.org/10.1155/2013/686587
Review Article

Low-Cost and Readily Available Tissue Carriers for the Boston Keratoprosthesis: A Review of Possibilities

Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

Received 1 August 2013; Accepted 8 October 2013

Academic Editor: Shivalingappa K. Swamynathan

Copyright © 2013 Andrea Cruzat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Klufas and K. A. Colby, “The boston keratoprosthesis,” International Ophthalmology Clinics, vol. 50, no. 3, pp. 161–175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. A. Colby and E. B. Koo, “Expanding indications for the Boston keratoprosthesis,” Current Opinion in Ophthalmology, vol. 22, no. 4, pp. 267–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Pujari, S. S. Siddique, C. H. Dohlman, and J. Chodosh, “The boston keratoprosthesis type II: the massachusetts eye and ear infirmary experience,” Cornea, vol. 30, no. 12, pp. 1298–1303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Coster and K. A. Williams, “Transplantation of the cornea,” Medical Journal of Australia, vol. 157, no. 6, pp. 405–408, 1992. View at Google Scholar · View at Scopus
  5. D. Pascolini and S. P. Mariotti, “Global estimates of visual impairment: 2010,” British Journal of Ophthalmology, vol. 96, no. 5, pp. 614–618, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. D. Miller, A. J. Maxwell, T. D. Lindquist, and J. Requard 3rd, “Validation of cooling effect of insulated containers for the shipment of corneal tissue and recommendations for transport,” Cornea, vol. 32, no. 1, pp. 63–69, 2013. View at Google Scholar
  7. M. R. Feilmeier, G. C. Tabin, L. Williams, and M. Oliva, “The use of glycerol-preserved corneas in the developing world,” Middle East African Journal of Ophthalmology, vol. 17, no. 1, pp. 38–43, 2010. View at Google Scholar
  8. E. C. Sweebe and C. H. Dohlman, “Nonviable donor material for lamellar keratoplasty,” Archives of ophthalmology, vol. 66, pp. 343–346, 1961. View at Google Scholar · View at Scopus
  9. M.-C. Robert, K. Biernacki, and M. Harissi-Dagher, “Boston keratoprosthesis type 1 surgery: use of frozen versus fresh corneal donor carriers,” Cornea, vol. 31, no. 4, pp. 339–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Banker, J. R. Layne Jr., G. L. Hicks Jr., and T. Wang, “Freezing preservation of the mammalian cardiac explant. II. Comparing the protective effect of glycerol and polyethylene glycol,” Cryobiology, vol. 29, no. 1, pp. 87–94, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. King Jr. and W. M. Townsend, “The prolonged storage of donor corneas by glycerine dehydration,” Transactions of the American Ophthalmological Society, vol. 82, pp. 106–110, 1984. View at Google Scholar · View at Scopus
  12. S. Arafat, A. Shukla, C. Dohlman, J. Chodosh, and J. B. Ciolino, “Cross-linking donor corneas for the Boston keratoprosthesis: a method of increasing resistance to collagenolytic degradation,” Investigative Ophthalmology & Visual Science, vol. 53, p. 6072, 2012. View at Google Scholar
  13. C. A. Utine, J. H. Tzu, and E. K. Akpek, “Lamellar keratoplasty using gamma-irradiated corneal lenticules,” American Journal of Ophthalmology, vol. 151, no. 1, pp. 170–e1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. E. K. Akpek, A. J. Aldave, and J. V. Aquavella, “The use of precut, gamma-irradiated corneal lenticules in Boston type 1 keratoprosthesis implantation,” American Journal of Ophthalmology, vol. 154, no. 3, pp. 495–498, 2012. View at Google Scholar
  15. J. D. Ament, Y. Tilahun, E. Mudawi, and R. Pineda, “Role for ipsilateral autologous corneas as a carrier for the Boston keratoprosthesis: the Africa experience,” Archives of Ophthalmology, vol. 128, no. 6, pp. 795–797, 2010. View at Google Scholar · View at Scopus
  16. J. Al-Merjan, N. Sadeq, and C. H. Dohlman, “Temporary tissue coverage of keratoprosthesis,” Middle East African Journal of Ophthalmology, vol. 8, pp. 12–18, 2000. View at Google Scholar
  17. D. Myung, C. Ta, E. Yung, and C. Frank, “Chondro-ocular graft transfer: an alternative to allograft transplantation?” Investigative Ophthalmology & Visual Science, vol. 54, p. 3477, 2013. View at Google Scholar
  18. J. M. Rohrbach, T.-M. Wohlrab, B. Sadowski, and H.-J. Thiel, “Biological corneal replacement—alternative to keratoplasty and keratoprosthesis? A pilot study with heterologous hyaline cartilage in the rabbit model,” Klinische Monatsblatter fur Augenheilkunde, vol. 207, no. 3, pp. 191–196, 1995. View at Google Scholar · View at Scopus
  19. T.-M. Wohlrab, K. Küper, and J. M. Rohrbach, “Allogen heterotopic cartilage transplantation for primary corneal replacement in rabbit model,” Klinische Monatsblatter fur Augenheilkunde, vol. 214, no. 3, pp. 142–146, 1999. View at Google Scholar · View at Scopus
  20. P. Zhiqiang, S. Cun, J. Ying, W. Ningli, and W. Li, “WZS-pig is a potential donor alternative in corneal xenotransplantation,” Xenotransplantation, vol. 14, no. 6, pp. 603–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Hara and D. K. C. Cooper, “Xenotransplantation-the future of corneal transplantation?” Cornea, vol. 30, no. 4, pp. 371–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Cruzat, A. Shukla, E. I. Paschalis, F. Cade, and C. Dohlman, “Corneal Xenografts: carrier for the Boston Keratoprosthesis?” Investigative Ophthalmology & Visual Science, vol. 53, p. 4126, 2012. View at Google Scholar
  23. M. Griffith, N. Polisetti, L. Kuffova et al., “Regenerative approaches as alternatives to donor allografting for restoration of corneal function,” The Ocular Surface, vol. 10, no. 3, pp. 170–183, 2012. View at Google Scholar
  24. P. Fagerholm, N. S. Lagali, K. Merrett et al., “A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study,” Science Translational Medicine, vol. 2, no. 46, Article ID 46ra61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Proulx and I. Brunette, “Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium,” Experimental Eye Research, vol. 95, no. 1, pp. 68–75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Garg, P. V. Krishna, A. K. Stratis, and U. Gopinathan, “The value of corneal transplantation in reducing blindness,” Eye, vol. 19, no. 10, pp. 1106–1114, 2005. View at Publisher · View at Google Scholar · View at Scopus