Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2015, Article ID 263756, 10 pages
http://dx.doi.org/10.1155/2015/263756
Research Article

Effect of Storage Temperature on Key Functions of Cultured Retinal Pigment Epithelial Cells

1Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
2Faculty of Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
3Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, P.O. Box 1052, Blindern, 0316 Oslo, Norway

Received 23 June 2015; Revised 30 August 2015; Accepted 31 August 2015

Academic Editor: Manuel Vidal-Sanz

Copyright © 2015 Lara Pasovic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Sparrrow, D. Hicks, and C. P. Hamel, “The retinal pigment epithelium in health and disease,” Current Molecular Medicine, vol. 10, no. 9, pp. 802–823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. F. Marmor, “Control of subretinal fluid: experimental and clinical studies,” Eye, vol. 4, no. 1, pp. 340–344, 1990. View at Google Scholar
  3. P. T. V. M. de Jong, “Age-related macular degeneration,” The New England Journal of Medicine, vol. 355, no. 14, pp. 1474–1485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A.-J. F. Carr, M. J. K. Smart, C. M. Ramsden, M. B. Powner, L. da Cruz, and P. J. Coffey, “Development of human embryonic stem cell therapies for age-related macular degeneration,” Trends in Neurosciences, vol. 36, no. 7, pp. 385–395, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Walia and G. A. Fishman, “Natural history of phenotypic changes in Stargardt macular dystrophy,” Ophthalmic Genetics, vol. 30, no. 2, pp. 63–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Sheridan, S. Mason, D. M. Pattwell, D. Kent, I. Grierson, and R. Williams, “Replacement of the RPE monolayer,” Eye, vol. 23, no. 10, pp. 1910–1915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Yaji, M. Yamato, J. Yang, T. Okano, and S. Hori, “Transplantation of tissue-engineered retinal pigment epithelial cell sheets in a rabbit model,” Biomaterials, vol. 30, no. 5, pp. 797–803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. D. Lund, P. Adamson, Y. Sauvé et al., “Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 17, pp. 9942–9947, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. Coffey, S. Girman, S. M. Wang et al., “Long-term preservation of cortically dependent visual function in RCS rats by transplantation,” Nature Neuroscience, vol. 5, no. 1, pp. 53–56, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. da Cruz, F. K. Chen, A. Ahmado, J. Greenwood, and P. Coffey, “RPE transplantation and its role in retinal disease,” Progress in Retinal and Eye Research, vol. 26, no. 6, pp. 598–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Pasovic, T. P. Utheim, R. Maria et al., “Optimization of storage temperature for cultured ARPE-19 cells,” Journal of Ophthalmology, vol. 2013, Article ID 216359, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Chopdar, U. Chakravarthy, and D. Verma, “Age related macular degeneration,” British Medical Journal, vol. 326, no. 7387, pp. 485–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. B. M. Kevany and K. Palczewski, “Phagocytosis of retinal rod and cone photoreceptors,” Physiology, vol. 25, no. 1, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Smith-Thomas, P. Richardson, A. J. Thody et al., “Human ocular melanocytes and retinal pigment epithelial cells differ in their melanogenic properties in vivo and in vitro,” Current Eye Research, vol. 15, no. 11, pp. 1079–1091, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Strauss, “The retinal pigment epithelium in visual function,” Physiological Reviews, vol. 85, no. 3, pp. 845–881, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Kaida, F. Cao, C. M. B. Skumatz, P. E. Irving, and J. M. Burke, “Time at confluence for human RPE cells: effects on the adherens junction and in vitro wound closure,” Investigative Ophthalmology and Visual Science, vol. 41, no. 10, pp. 3215–3224, 2000. View at Google Scholar · View at Scopus
  17. L. J. Rizzolo, “Development and role of tight junctions in the retinal pigment epithelium,” International Review of Cytology, vol. 258, pp. 195–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Ban and L. J. Rizzolo, “Regulation of glucose transporters during development of the retinal pigment epithelium,” Developmental Brain Research, vol. 121, no. 1, pp. 89–95, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. P. D. Senanayake, A. Calabro, J. G. Hu et al., “Glucose utilization by the retinal pigment epithelium: evidence for rapid uptake and storage in glycogen, followed by glycogen utilization,” Experimental Eye Research, vol. 83, no. 2, pp. 235–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Geering, “Subunit assembly and functional maturation of Na,K-ATPase,” Journal of Membrane Biology, vol. 115, no. 2, pp. 109–121, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. K. C. Dunn, A. E. Aotaki-Keen, F. R. Putkey, and L. M. Hjelmeland, “ARPE-19, a human retinal pigment epithelial cell line with differentiated properties,” Experimental Eye Research, vol. 62, no. 2, pp. 155–169, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. K. C. Dunn, A. D. Marmorstein, V. L. Bonilha, E. Rodriguez-Boulan, F. Giordano, and L. M. Hjelmeland, “Use of the ARPE-19 cell line as a model of RPE polarity: basolateral secretion of FGF5,” Investigative Ophthalmology and Visual Science, vol. 39, no. 13, pp. 2744–2749, 1998. View at Google Scholar · View at Scopus
  23. Y. Luo, Y. Zhuo, M. Fukuhara, and L. J. Rizzolo, “Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line,” Investigative Ophthalmology and Visual Science, vol. 47, no. 8, pp. 3644–3655, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Tian, K. Ishibashi, S. Honda, S. A. Boylan, L. M. Hjelmeland, and J. T. Handa, “The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions,” British Journal of Ophthalmology, vol. 89, no. 11, pp. 1510–1517, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Geisen, J. R. McColm, B. M. King, and M. E. Hartnett, “Characterization of barrier properties and inducible VEGF expression of several types of retinal pigment epithelium in medium-term culture,” Current Eye Research, vol. 31, no. 9, pp. 739–748, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. N. V. Strunnikova, A. Maminishkis, J. J. Barb et al., “Transcriptome analysis and molecular signature of human retinal pigment epithelium,” Human Molecular Genetics, vol. 19, no. 12, Article ID ddq129, pp. 2468–2486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Cai and L. V. Del Priore, “Gene expression profile of cultured adult compared to immortalized human retinal pigment epithelium,” Molecular Vision, vol. 12, pp. 1–14, 2006. View at Google Scholar · View at Scopus
  28. J. M. Burke, F. Cao, and P. E. Irving, “High levels of E-/P-cadherin: correlation with decreased apical polarity of Na/K ATPase in bovine RPE cells in situ,” Investigative Ophthalmology and Visual Science, vol. 41, no. 7, pp. 1945–1952, 2000. View at Google Scholar · View at Scopus
  29. J. M. Burke and L. M. Hjelmeland, “Mosaicism of the retinal pigment epithelium: seeing the small picture,” Molecular Interventions, vol. 5, no. 4, pp. 241–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Ando, M. Ueda, M. Uyama, Y. Masu, T. Okumura, and S. Ito, “Heterogeneity in ornithine cytotoxicity of bovine retinal pigment epithelial cells in primary culture,” Experimental Eye Research, vol. 70, no. 1, pp. 89–96, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. B. S. Mckay and J. M. Burke, “Separation of phenotypically distinct subpopulations of cultured human retinal pigment epithelial cells,” Experimental Cell Research, vol. 213, no. 1, pp. 85–92, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Albert, M. O. M. Tso, and A. S. Rabson, “In vitro growth of pure cultures of retinal pigment epithelium,” Archives of Ophthalmology, vol. 88, no. 1, pp. 63–69, 1972. View at Publisher · View at Google Scholar · View at Scopus
  33. R. K. Sharma, W. E. Orr, A. D. Schmitt, and D. A. Johnson, “A functional profile of gene expression in ARPE-19 cells,” BMC Ophthalmology, vol. 5, article 25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Tian, K. Ishibashi, and J. T. Handa, “The expression of native and cultured RPE grown on different matrices,” Physiological Genomics, vol. 17, no. 2, pp. 170–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Binder, B. V. Stanzel, I. Krebs, and C. Glittenberg, “Transplantation of the RPE in AMD,” Progress in Retinal and Eye Research, vol. 26, no. 5, pp. 516–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Mazzoni, H. Safa, and S. C. Finnemann, “Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture,” Experimental Eye Research, vol. 126, pp. 51–60, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. S. C. Finnemann, V. L. Bonilha, A. D. Marmorstein, and E. Rodriguez-Boulan, “Phagocytosis of rod outer segments by retinal pigment epithelial cells requires αvβ5 integrin for binding but not for internalization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 12932–12937, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. E. U. Irschick, R. Sgonc, G. Böck et al., “Retinal pigment epithelial phagocytosis and metabolism differ from those of macrophages,” Ophthalmic Research, vol. 36, no. 4, pp. 200–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. U. Irschick, G. Haas, M. Geiger et al., “Phagocytosis of human retinal pigment epithelial cells: evidence of a diurnal rhythm, involvement of the cytoskeleton and interference of antiviral drugs,” Ophthalmic Research, vol. 38, no. 3, pp. 164–174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Proulx, S. Landreville, S. L. Guérin, and C. Salesse, “Integrin α5 expression by the ARPE-19 cell line: comparison with primary RPE cultures and effect of growth medium on the α5 gene promoter strength,” Experimental Eye Research, vol. 79, no. 2, pp. 157–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Memoli, A. Napolitano, M. D'Ischia, G. Misuraca, A. Palumbo, and G. Prota, “Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation,” Biochimica et Biophysica Acta—Lipids and Lipid Metabolism, vol. 1346, no. 1, pp. 61–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Wang, J. Dillon, and E. R. Gaillard, “Antioxidant properties of melanin in retinal pigment epithelial cells,” Photochemistry and Photobiology, vol. 82, no. 2, pp. 474–479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. U. Schraermeyer and K. Heimann, “Current understanding on the role of retinal pigment epithelium and its pigmentation,” Pigment Cell Research, vol. 12, no. 4, pp. 219–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Lu, D. Yan, X. Zhou, D.-N. Hu, and J. Qu, “Expression of melanin-related genes in cultured adult human retinal pigment epithelium and uveal melanoma cells,” Molecular Vision, vol. 13, pp. 2066–2072, 2007. View at Google Scholar · View at Scopus
  45. W. K. Jin, H. K. Kyung, P. Burrola, T. W. Mak, and G. Lemke, “Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium,” Genes & Development, vol. 22, no. 22, pp. 3147–3157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Tamiya, L. Liu, and H. J. Kaplan, “Epithelial-mesenchymal transition and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell contact,” Investigative Ophthalmology and Visual Science, vol. 51, no. 5, pp. 2755–2763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Rico, C. Chu, M. H. Abdulreda, Y. Qin, and V. T. Moy, “Temperature modulation of integrin-mediated cell adhesion,” Biophysical Journal, vol. 99, no. 5, pp. 1387–1396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Sagvolden, I. Giaever, E. O. Pettersen, and J. Feder, “Cell adhesion force microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 471–476, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. E. B. Lomakina and R. E. Waugh, “Micromechanical tests of adhesion dynamics between neutrophils and immobilized ICAM-1,” Biophysical Journal, vol. 86, no. 2, pp. 1223–1233, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. R. L. Juliano and E. Gagalang, “The adhesion of Chinese hamster cells. I. Effects of temperature, metabolic inhibitors and proteolytic dissection of cell surface macromolecules,” Journal of Cellular Physiology, vol. 92, no. 2, pp. 209–220, 1977. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Zhang, Y. Zhang, H. Xiao, X. Liang, D. Sun, and S. Peng, “A gene expression profile of the developing human retinal pigment epithelium,” Molecular Vision, vol. 18, pp. 2961–2975, 2012. View at Google Scholar · View at Scopus
  52. H. Takagi, H. Tanihara, Y. Seino, and N. Yoshimura, “Characterization of glucose transporter in cultured human retinal pigment epithelial cells: gene expression and effect of growth factors,” Investigative Ophthalmology and Visual Science, vol. 35, no. 1, pp. 170–177, 1994. View at Google Scholar · View at Scopus
  53. I. A. Simpson, D. Dwyer, D. Malide, K. H. Moley, A. Travis, and S. J. Vannucci, “The facilitative glucose transporter GLUT3: 20 years of distinction,” American Journal of Physiology—Endocrinology and Metabolism, vol. 295, no. 2, pp. E242–E253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Z. Gerhart, M. A. Broderius, N. D. Borson, and L. R. Drewes, “Neurons and microvessels express the brain glucose transporter protein GLUT3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 2, pp. 733–737, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Pantaleon, M. B. Harvey, W. S. Pascoe, D. E. James, and P. L. Kaye, “Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3795–3800, 1997. View at Publisher · View at Google Scholar · View at Scopus