Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2017, Article ID 3034953, 19 pages
https://doi.org/10.1155/2017/3034953
Review Article

A Critical Analysis of the Available In Vitro and Ex Vivo Methods to Study Retinal Angiogenesis

1Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
2Unidade de Investigação Cardiovascular, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
3Departamento de Cirurgia Cardiotorácica, Centro Hospitalar São João, Porto, Portugal
4Departamento de Oftalmologia, Centro Hospitalar São João, Porto, Portugal

Correspondence should be addressed to A. Rocha-Sousa; tp.pu.dem@asuosra

Received 11 April 2017; Revised 20 June 2017; Accepted 28 June 2017; Published 7 August 2017

Academic Editor: Biju B. Thomas

Copyright © 2017 A. F. Moleiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Risau, “Mechanisms of angiogenesis,” Nature, vol. 386, no. 6626, pp. 671–674, 1997. View at Publisher · View at Google Scholar
  2. P. A. Campochiaro, “Ocular neovascularization,” Journal of Molecular Medicine (Berlin), vol. 91, no. 3, pp. 311–321, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Goodwin, “In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents,” Microvascular Research, vol. 74, no. 2-3, pp. 172–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Rezzola, M. Belleri, D. Ribatti, C. Costagliola, M. Presta, and F. Semeraro, “A novel ex vivo murine retina angiogenesis (EMRA) assay,” Experimental Eye Research, vol. 112, pp. 51–56, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. P. N. Bishop, “The role of extracellular matrix in retinal vascular development and preretinal neovascularization,” Experimental Eye Research, vol. 133, pp. 30–36, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. A. C. Taylor, L. M. Seltz, P. A. Yates, and S. M. Peirce, “Chronic whole-body hypoxia induces intussusceptive angiogenesis and microvascular remodeling in the mouse retina,” Microvascular Research, vol. 79, no. 2, pp. 93–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. F. Gariano and T. W. Gardner, “Retinal angiogenesis in development and disease,” Nature, vol. 438, no. 7070, pp. 960–966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Semeraro, A. Cancarini, R. dell’Omo, S. Rezzola, M. R. Romano, and C. Costagliola, “Diabetic retinopathy: vascular and inflammatory disease,” Journal of Diabetes Research, vol. 2015, Article ID 582060, 16 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. K. Otrock, R. A. Mahfouz, J. A. Makarem, and A. I. Shamseddine, “Understanding the biology of angiogenesis: review of the most important molecular mechanisms,” Blood Cells, Molecules & Diseases, vol. 39, no. 2, pp. 212–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pozzi and R. Zent, “Regulation of endothelial cell functions by basement membrane- and arachidonic acid-derived products,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 1, no. 2, pp. 254–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. M. Damico, “Angiogenesis and retinal diseases,” Arquivos Brasileiros de Oftalmologia, vol. 70, no. 3, pp. 547–553, 2007. View at Google Scholar
  12. R. Simo, M. Villarroel, L. Corraliza, C. Hernández, and M. Garcia-Ramírez, “The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier—implications for the pathogenesis of diabetic retinopathy,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 190724, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Laterra and G. W. Goldstein, “Astroglial-induced in vitro angiogenesis: requirements for RNA and protein synthesis,” Journal of Neurochemistry, vol. 57, no. 4, pp. 1231–1239, 1991. View at Google Scholar
  14. N. Koyama, S. Watanabe, M. Tezuka, N. Morisaki, Y. Saito, and S. Yoshida, “Migratory and proliferative effect of platelet-derived growth factor in rabbit retinal endothelial cells: evidence of an autocrine pathway of platelet-derived growth factor,” Journal of Cellular Physiology, vol. 158, no. 1, pp. 1–6, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yoshikawa, T. Ishibashi, Y. Hata, H. Inomata, and K. Sueishi, “The suppressive effect of tecogalan sodium on in vitro angiogenesis via the periendothelial proteolytic activities,” Ophthalmic Research, vol. 32, no. 6, pp. 261–269, 2000. View at Google Scholar
  16. M. A. Behzadian, X. L. Wang, L. J. Windsor, N. Ghaly, and R. B. Caldwell, “TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function,” Investigative Ophthalmology & Visual Science, vol. 42, no. 3, pp. 853–859, 2001. View at Google Scholar
  17. Q. Yan, Y. Li, A. Hendrickson, and E. H. Sage, “Regulation of retinal capillary cells by basic fibroblast growth factor, vascular endothelial growth factor, and hypoxia,” In Vitro Cellular & Developmental Biology. Animal, vol. 37, no. 1, pp. 45–49, 2001. View at Publisher · View at Google Scholar
  18. R. Castellon, S. Caballero, H. K. Hamdi et al., “Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture,” Investigative Ophthalmology & Visual Science, vol. 43, no. 8, pp. 2758–2766, 2002. View at Google Scholar
  19. W. Eichler, Y. Yafai, P. Wiedemann, and A. Reichenbach, “Angiogenesis-related factors derived from retinal glial (Muller) cells in hypoxia,” Neuroreport, vol. 15, no. 10, pp. 1633–1637, 2004. View at Google Scholar
  20. W. Eichler, Y. Yafai, T. Keller, P. Wiedemann, and A. Reichenbach, “PEDF derived from glial Muller cells: a possible regulator of retinal angiogenesis,” Experimental Cell Research, vol. 299, no. 1, pp. 68–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Economopoulou, K. Bdeir, D. B. Cines et al., “Inhibition of pathologic retinal neovascularization by alpha-defensins,” Blood, vol. 106, no. 12, pp. 3831–3838, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Chen, D. Hicks, D. Brantley-Sieders et al., “Inhibition of retinal neovascularization by soluble EphA2 receptor,” Experimental Eye Research, vol. 82, no. 4, pp. 664–673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Coleman, T. A. Gardiner, A. Boutaud, and A. W. Stitt, “Recombinant alpha2(IV)NC1 domain of type IV collagen is an effective regulator of retinal capillary endothelial cell proliferation and inhibits pre-retinal neovascularisation,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 245, no. 4, pp. 581–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. W. Maines, K. J. French, E. B. Wolpert, D. A. Antonetti, and C. D. Smith, “Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: implications for angiogenic ocular diseases,” Investigative Ophthalmology & Visual Science, vol. 47, no. 11, pp. 5022–5031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Yafai, J. Lange, P. Wiedemann, A. Reichenbach, and W. Eichler, “Pigment epithelium-derived factor acts as an opponent of growth-stimulatory factors in retinal glial-endothelial cell interactions,” Glia, vol. 55, no. 6, pp. 642–651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. J. You, C. H. Yang, J. S. Huang, M. S. Chen, and C. M. Yang, “Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis,” Investigative Ophthalmology & Visual Science, vol. 48, no. 11, pp. 5290–5298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. U. R. Michaelis, N. Xia, E. Barbosa-Sicard, J. R. Falck, and I. Fleming, “Role of cytochrome P450 2C epoxygenases in hypoxia-induced cell migration and angiogenesis in retinal endothelial cells,” Investigative Ophthalmology & Visual Science, vol. 49, no. 3, pp. 1242–1247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Hata, M. Miura, S. Nakao, S. Kawahara, T. Kita, and T. Ishibashi, “Antiangiogenic properties of fasudil, a potent Rho-Kinase inhibitor,” Japanese Journal of Ophthalmology, vol. 52, no. 1, pp. 16–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Navaratna, J. Maestas, P. G. McGuire, and A. Das, “Suppression of retinal neovascularization with an antagonist to vascular endothelial cadherin,” Archives of Ophthalmology, vol. 126, no. 8, pp. 1082–1088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Zhao, H. Jin, Q. Li et al., “Inhibition of pathologic retinal neovascularization by a small peptide derived from human apolipoprotein(a),” Investigative Ophthalmology & Visual Science, vol. 50, no. 11, pp. 5384–5395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Matesanz, G. Park, H. McAllister et al., “Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells,” Investigative Ophthalmology & Visual Science, vol. 51, no. 12, pp. 6815–6825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Banumathi, A. O’Connor, S. Gurunathan, D. A. Simpson, J. G. McGeown, and T. M. Curtis, “VEGF-induced retinal angiogenic signaling is critically dependent on Ca2+ signaling by Ca2+/calmodulin-dependent protein kinase II,” Investigative Ophthalmology & Visual Science, vol. 52, no. 6, pp. 3103–3111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Cai, L. Wu, X. Qi et al., “PEDF regulates vascular permeability by a gamma-secretase-mediated pathway,” PLoS One, vol. 6, no. 6, article e21164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Guduric-Fuchs, A. O’Connor, A. Cullen et al., “Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RNAs in retinal microvascular endothelial cells,” Journal of Cellular Biochemistry, vol. 113, no. 6, pp. 2098–2111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Liu, X. Qi, Z. Chen et al., “Targeting the IRE1alpha/XBP1 and ATF6 arms of the unfolded protein response enhances VEGF blockade to prevent retinal and choroidal neovascularization,” The American Journal of Pathology, vol. 182, no. 4, pp. 1412–1424, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Jittiporn, J. Suwanpradid, C. Patel et al., “Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative alpha-mangostin,” Microvascular Research, vol. 93, pp. 72–79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. J. T. Durham, B. M. Dulmovits, S. M. Cronk, A. R. Sheets, and I. M. Herman, “Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy?” Investigative Ophthalmology & Visual Science, vol. 56, no. 6, pp. 3441–3459, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. M. B. Grant, R. W. Tarnuzzer, S. Caballero et al., “Adenosine receptor activation induces vascular endothelial growth factor in human retinal endothelial cells,” Circulation Research, vol. 85, no. 8, pp. 699–706, 1999. View at Publisher · View at Google Scholar
  39. J. J. Steinle and H. J. Granger, “Nerve growth factor regulates human choroidal, but not retinal, endothelial cell migration and proliferation,” Autonomic Neuroscience, vol. 108, no. 1-2, pp. 57–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Xu, Y. Yu, and E. J. Duh, “Vascular endothelial growth factor upregulates expression of ADAMTS1 in endothelial cells through protein kinase C signaling,” Investigative Ophthalmology & Visual Science, vol. 47, no. 9, pp. 4059–4066, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Li, W. Yin, X. Hong et al., “Remodeling retinal neovascularization by ALK1 gene transfection in vitro,” Investigative Ophthalmology & Visual Science, vol. 49, no. 10, pp. 4553–4560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Cano Mdel, E. D. Karagiannis, M. Soliman et al., “A peptide derived from type 1 thrombospondin repeat-containing protein WISP-1 inhibits corneal and choroidal neovascularization,” Investigative Ophthalmology & Visual Science, vol. 50, no. 8, pp. 3840–3845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Basu, G. Menicucci, J. Maestas, A. Das, and P. McGuire, “Plasminogen activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy,” Investigative Ophthalmology & Visual Science, vol. 50, no. 10, pp. 4974–4981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Kim, B. J. Lee, J. H. Kim, Y. S. Yu, M. Y. Kim, and K. W. Kim, “Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21(WAF1) expression,” European Journal of Pharmacology, vol. 615, no. 1–3, pp. 150–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Afzal, S. Caballero, S. S. Palii et al., “Targeting retinal and choroid neovascularization using the small molecule inhibitor carboxyamidotriazole,” Brain Research Bulletin, vol. 81, no. 2-3, pp. 320–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. H. Kim, J. H. Kim, Y. M. Lee, E. M. Ahn, K. W. Kim, and Y. S. Yu, “Decursin inhibits retinal neovascularization via suppression of VEGFR-2 activation,” Molecular Vision, vol. 15, pp. 1868–1875, 2009. View at Google Scholar
  47. H. Ma, A. Tochigi, T. R. Shearer, and M. Azuma, “Calpain inhibitor SNJ-1945 attenuates events prior to angiogenesis in cultured human retinal endothelial cells,” Journal of Ocular Pharmacology and Therapeutics, vol. 25, no. 5, pp. 409–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. E. Yanni, M. L. Clark, R. Yang, D. P. Bingaman, and J. S. Penn, “The effects of nepafenac and amfenac on retinal angiogenesis,” Brain Research Bulletin, vol. 81, no. 2-3, pp. 310–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Lara-Castillo, S. Zandi, S. Nakao et al., “Atrial natriuretic peptide reduces vascular leakage and choroidal neovascularization,” The American Journal of Pathology, vol. 175, no. 6, pp. 2343–2350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. M. V. Hoang, L. E. Smith, and D. R. Senger, “Calpain inhibitors reduce retinal hypoxia in ischemic retinopathy by improving neovascular architecture and functional perfusion,” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1812, no. 4, pp. 549–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. V. Hoang, L. E. Smith, and D. R. Senger, “Moderate GSK-3beta inhibition improves neovascular architecture, reduces vascular leakage, and reduces retinal hypoxia in a model of ischemic retinopathy,” Angiogenesis, vol. 13, no. 3, pp. 269–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. J. H. Kim, M. H. Kim, D. H. Jo, Y. S. Yu, T. G. Lee, and J. H. Kim, “The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation,” Biomaterials, vol. 32, no. 7, pp. 1865–1871, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Nakamura, N. Morimoto, K. Tsuruma et al., “Tissue kallikrein inhibits retinal neovascularization via the cleavage of vascular endothelial growth factor-165,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 5, pp. 1041–1048, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. E. A. Stewart, G. J. Samaranayake, A. C. Browning, A. Hopkinson, and W. M. Amoaku, “Comparison of choroidal and retinal endothelial cells: characteristics and response to VEGF isoforms and anti-VEGF treatments,” Experimental Eye Research, vol. 93, no. 5, pp. 761–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. C. S. Jadhao, A. D. Bhatwadekar, Y. Jiang, M. E. Boulton, J. J. Steinle, and M. B. Grant, “Nerve growth factor promotes endothelial progenitor cell-mediated angiogenic responses,” Investigative Ophthalmology & Visual Science, vol. 53, no. 4, pp. 2030–2037, 2012. View at Publisher · View at Google Scholar
  56. Z. Xu, J. Gong, D. Maiti et al., “MEF2C ablation in endothelial cells reduces retinal vessel loss and suppresses pathologic retinal neovascularization in oxygen-induced retinopathy,” The American Journal of Pathology, vol. 180, no. 6, pp. 2548–2560, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Nakamura, K. Tsuruma, M. Shimazawa, and H. Hara, “Candesartan, an angiotensin II type 1 receptor antagonist, inhibits pathological retinal neovascularization by downregulating VEGF receptor-2 expression,” European Journal of Pharmacology, vol. 685, no. 1–3, pp. 8–14, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Giddabasappa, J. R. Eswaraka, C. M. Barrett et al., “beta-LGND2, an ERbeta selective agonist, inhibits pathologic retinal neovascularization,” Investigative Ophthalmology & Visual Science, vol. 53, no. 8, pp. 5066–5075, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Yokouchi, K. Eto, W. Nishimura et al., “Angiopoietin-like protein 4 (ANGPTL4) is induced by high glucose in retinal pigment epithelial cells and exhibits potent angiogenic activity on retinal endothelial cells,” Acta Ophthalmologica, vol. 91, no. 4, pp. e289–e297, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Buehler, N. Sitaras, S. Favret et al., “Semaphorin 3F forms an anti-angiogenic barrier in outer retina,” FEBS Letters, vol. 587, no. 11, pp. 1650–1655, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. R. B. Shmueli, M. Ohnaka, A. Miki et al., “Long-term suppression of ocular neovascularization by intraocular injection of biodegradable polymeric particles containing a serpin-derived peptide,” Biomaterials, vol. 34, no. 30, pp. 7544–7551, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Ma, M. Mehta, G. Lam et al., “Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation,” Molecular Vision, vol. 20, pp. 881–893, 2014. View at Google Scholar
  63. H. D. Basavarajappa, B. Lee, H. Lee et al., “Synthesis and biological evaluation of novel homoisoflavonoids for retinal neovascularization,” Journal of Medicinal Chemistry, vol. 58, no. 12, pp. 5015–5027, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. LeBlanc, W. Wang, X. Chen et al., “The regulatory role of hepatoma-derived growth factor as an angiogenic factor in the eye,” Molecular Vision, vol. 22, pp. 374–386, 2016. View at Google Scholar
  65. M. Yamaguchi, S. Nakao, R. Arita et al., “Vascular normalization by ROCK inhibitor: therapeutic potential of Ripasudil (K-115) eye drop in retinal angiogenesis and hypoxia,” Investigative Ophthalmology & Visual Science, vol. 57, no. 4, pp. 2264–2276, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Kobayashi, S. Yoshida, Y. Zhou et al., “Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy,” Molecular Vision, vol. 22, pp. 436–445, 2016. View at Google Scholar
  67. A. M. Abu El-Asrar, K. Alam, M. I. Nawaz et al., “Upregulation of thrombin/matrix metalloproteinase-1/protease-activated receptor-1 chain in proliferative diabetic retinopathy,” Current Eye Research, vol. 41, no. 12, pp. 1590–1600, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Zhou, S. Yoshida, Y. Kubo et al., “Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy,” Scientific Reports, vol. 6, article 28140, 2016. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Unoki, T. Murakami, K. Nishijima, K. Ogino, N. van Rooijen, and N. Yoshimura, “SDF-1/CXCR4 contributes to the activation of tip cells and microglia in retinal angiogenesis,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3362–3371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Lee, W. Sun, H. Lee et al., “Design, synthesis and biological evaluation of photoaffinity probes of antiangiogenic homoisoflavonoids,” Bioorganic & Medicinal Chemistry Letters, vol. 26, no. 17, pp. 4277–4281, 2016. View at Publisher · View at Google Scholar · View at Scopus
  71. J. H. Yun, S. W. Park, K. J. Kim et al., “Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy,” Journal of Cellular Physiology, vol. 232, no. 5, pp. 1123–1134, 2017. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Gong, Z. Shao, Z. Fu et al., “Fenofibrate inhibits cytochrome P450 epoxygenase 2C activity to suppress pathological ocular angiogenesis,” eBioMedicine, vol. 13, pp. 201–211, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Motta, G. Lupo, D. Rusciano et al., “Molecular mechanisms mediating antiangiogenic action of the urokinase receptor-derived peptide UPARANT in human retinal endothelial cells,” Investigative Ophthalmology & Visual Science, vol. 57, no. 13, pp. 5723–5735, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. X. H. Xu, C. Zhao, Q. Peng, P. Xie, and Q. H. Liu, “Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment,” Brazilian Journal of Medical and Biological Research, vol. 50, no. 3, article e5396, 2017. View at Publisher · View at Google Scholar
  75. J. Xie, Q. Gong, X. Liu et al., “Transcription factor SP1 mediates hyperglycemia-induced upregulation of roundabout4 in retinal microvascular endothelial cells,” Gene, vol. 616, pp. 31–40, 2017. View at Publisher · View at Google Scholar
  76. J. D. Lam, D. J. Oh, L. L. Wong et al., “Identification of RUNX1 as a mediator of aberrant retinal angiogenesis,” Diabetes, vol. 66, 2017. View at Publisher · View at Google Scholar
  77. Y. Gong, Z. Fu, M. L. Edin et al., “Cytochrome P450 Oxidase 2C inhibition adds to omega-3 long-chain polyunsaturated fatty acids protection against retinal and choroidal neovascularization,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 36, no. 9, pp. 1919–1927, 2016. View at Publisher · View at Google Scholar · View at Scopus
  78. R. L. Gendron, W. V. Good, L. C. Adams, and H. Paradis, “Suppressed expression of tubedown-1 in retinal neovascularization of proliferative diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 42, no. 12, pp. 3000–3007, 2001. View at Google Scholar
  79. Y. Chen, X. X. Li, N. Z. Xing, and X. G. Cao, “Quercetin inhibits choroidal and retinal angiogenesis in vitro,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 3, pp. 373–378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. J. J. You, C. H. Yang, M. S. Chen, and C. M. Yang, “Cysteine-rich 61, a member of the CCN family, as a factor involved in the pathogenesis of proliferative diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 50, no. 7, pp. 3447–3455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Huang, W. Yu, X. Li et al., “Expression of Robo4 in the fibrovascular membranes from patients with proliferative diabetic retinopathy and its role in RF/6A and RPE cells,” Molecular Vision, vol. 15, pp. 1057–1069, 2009. View at Google Scholar
  82. L. Huang, Y. Xu, W. Yu et al., “Robo1: a potential role in ocular angiogenesis,” Current Eye Research, vol. 34, no. 12, pp. 1019–1029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Xu, H. Zhao, Y. Zheng, Q. Gu, J. Ma, and X. Xu, “A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo,” Molecular Vision, vol. 16, pp. 1982–1995, 2010. View at Google Scholar
  84. H. He, B. Li, H. Zhang, N. Xiang, and G. G. Li, “Effect of DLL4 siRNA on proliferation, migration and tube formation of choroid-retinal endothelial cells under hypoxic conditions,” Chinese Medical Journal, vol. 124, no. 1, pp. 118–126, 2011. View at Google Scholar
  85. T. Sun, H. Cao, L. Xu, B. Zhu, Q. Gu, and X. Xu, “Insulin-like growth factor binding protein-related protein 1 mediates VEGF-induced proliferation, migration and tube formation of retinal endothelial cells,” Current Eye Research, vol. 36, no. 4, pp. 341–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. X. S. Luo, X. W. Wu, and Q. Gu, “An experimental study of a modified Dahuang Zhechong pill on the—angiogenesis of RF/6A cells in vitro,” Journal of Traditional Chinese Medicine, vol. 32, no. 1, pp. 75–81, 2012. View at Google Scholar
  87. Y. Zheng, Q. Gu, and X. Xu, “Inhibition of ocular neovascularization by a novel peptide derived from human placenta growth factor-1,” Acta Ophthalmologica, vol. 90, no. 7, pp. e512–e523, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Du, S. Wang, Q. Wu, J. Hu, and T. Li, “Decorin inhibits angiogenic potential of choroid-retinal endothelial cells by downregulating hypoxia-induced Met, Rac1, HIF-1alpha and VEGF expression in cocultured retinal pigment epithelial cells,” Experimental Eye Research, vol. 116, pp. 151–160, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. Q. Q. Wang, S. J. Zhou, Z. X. Meng et al., “Domain I-IV of beta2-glycoprotein I inhibits advanced glycation end product-induced angiogenesis by down-regulating vascular endothelial growth factor 2 signaling,” Molecular Medicine Reports, vol. 11, no. 3, pp. 2167–2172, 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. B. Yan, J. Yao, J. Y. Liu et al., “lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA,” Circulation Research, vol. 116, no. 7, pp. 1143–1156, 2015. View at Publisher · View at Google Scholar · View at Scopus
  91. F. Li, Y. Bai, M. Zhao et al., “Quercetin inhibits vascular endothelial growth factor-induced choroidal and retinal angiogenesis in vitro,” Ophthalmic Research, vol. 53, no. 3, pp. 109–116, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Li, J. Du, and Y. Chang, “Role of Autophagy in hypoxia-induced angiogenesis of RF/6A cells in vitro,” Current Eye Research, vol. 41, no. 12, pp. 1566–1570, 2016. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Wang, A. Sang, M. Zhu et al., “Tissue factor induces VEGF expression via activation of the Wnt/beta-catenin signaling pathway in ARPE-19 cells,” Molecular Vision, vol. 22, pp. 886–897, 2016. View at Google Scholar
  94. Z. Yu, T. Zhang, C. Gong et al., “Erianin inhibits high glucose-induced retinal angiogenesis via blocking ERK1/2-regulated HIF-1alpha-VEGF/VEGFR2 signaling pathway,” Scientific Reports, vol. 6, article 34306, 2016. View at Publisher · View at Google Scholar · View at Scopus
  95. A. A. Mondragon, B. S. Betts-Obregon, R. J. Moritz et al., “BIGH3 protein and macrophages in retinal endothelial cell apoptosis,” Apoptosis, vol. 20, no. 1, pp. 29–37, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Forooghian and B. Das, “Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha,” American Journal of Ophthalmology, vol. 144, no. 5, pp. 761–768, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. K. Maier, N. Kociok, G. Zahn et al., “Modulation of hypoxia-induced neovascularization by JSM6427, an integrin alpha5beta1 inhibiting molecule,” Current Eye Research, vol. 32, no. 9, pp. 801–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Chikaraishi, N. Matsunaga, M. Shimazawa, and H. Hara, “Rifampicin inhibits the retinal neovascularization in vitro and in vivo,” Experimental Eye Research, vol. 86, no. 1, pp. 131–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Matsunaga, Y. Chikaraishi, H. Izuta et al., “Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy,” Ophthalmology, vol. 115, no. 11, pp. 1916–1922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Matsunaga, Y. Chikaraishi, M. Shimazawa, S. Yokota, and H. Hara, “Vaccinium myrtillus (bilberry) extracts reduce angiogenesis in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 1, pp. 47–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. J. H. Kim, J. H. Kim, M. Oh, Y. S. Yu, K. W. Kim, and H. J. Kwon, “N-hydroxy-7-(2-naphthylthio) heptanomide inhibits retinal and choroidal angiogenesis,” Molecular Pharmaceutics, vol. 6, no. 2, pp. 513–519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Nakamura, Y. Chikaraishi, K. Tsuruma, M. Shimazawa, and H. Hara, “Ruboxistaurin, a PKCbeta inhibitor, inhibits retinal neovascularization via suppression of phosphorylation of ERK1/2 and Akt,” Experimental Eye Research, vol. 90, no. 1, pp. 137–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. H. Pourgholami, L. M. Khachigian, R. G. Fahmy et al., “Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis,” Biochemical and Biophysical Research Communications, vol. 397, no. 4, pp. 729–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. K. M. Nishiguchi, K. Kataoka, S. Kachi, K. Komeima, and H. Terasaki, “Regulation of pathologic retinal angiogenesis in mice and inhibition of VEGF-VEGFR2 binding by soluble heparan sulfate,” PLoS One, vol. 5, no. 10, article e13493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Yu, X. H. Liang, and N. Ferrara, “Comparing protein VEGF inhibitors: in vitro biological studies,” Biochemical and Biophysical Research Communications, vol. 408, no. 2, pp. 276–281, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. R. Kumar, S. Harris-Hooker, R. Kumar, and G. Sanford, “Co-culture of retinal and endothelial cells results in the modulation of genes critical to retinal neovascularization,” Vascular Cell, vol. 3, p. 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. J. Bai, L. Z. Huang, X. L. Xu et al., “Polyethylene glycol-modified pigment epithelial-derived factor: new prospects for treatment of retinal neovascularization,” The Journal of Pharmacology and Experimental Therapeutics, vol. 342, no. 1, pp. 131–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. Q. Lu, L. Zhang, X. Shen et al., “A novel and effective human hepatocyte growth factor kringle 1 domain inhibits ocular neovascularization,” Experimental Eye Research, vol. 105, pp. 15–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. S. A. Morales, D. G. Telander, D. Leon et al., “Epithelial membrane protein 2 controls VEGF expression in ARPE-19 cells,” Investigative Ophthalmology & Visual Science, vol. 54, no. 3, pp. 2367–2372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. J. Bai, L. Z. Huang, A. Y. Zhou, M. Zhao, W. Z. Yu, and X. X. Li, “Antiangiogenesis effects of endostatin in retinal neovascularization,” Journal of Ocular Pharmacology and Therapeutics, vol. 29, no. 7, pp. 619–626, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Wang, Y. Bai, W. Yu et al., “Anti-angiogenic effect of KH902 on retinal neovascularization,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 251, no. 9, pp. 2131–2139, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. W. Yu, Y. Bai, N. Han et al., “Inhibition of pathological retinal neovascularization by semaphorin 3A,” Molecular Vision, vol. 19, pp. 1397–1405, 2013. View at Google Scholar
  113. D. H. Jo, S. Kim, D. Kim, J. H. Kim, S. Jon, and J. H. Kim, “VEGF-binding aptides and the inhibition of choroidal and retinal neovascularization,” Biomaterials, vol. 35, no. 9, pp. 3052–3059, 2014. View at Publisher · View at Google Scholar · View at Scopus
  114. Y. Xu, X. An, X. Guo et al., “Endothelial PFKFB3 plays a critical role in angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 6, pp. 1231–1239, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Ghim, J. S. Moon, C. S. Lee et al., “Endothelial deletion of phospholipase D2 reduces hypoxic response and pathological angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 8, pp. 1697–1703, 2014. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Zhang, J. Zhao, Y. Bai, L. Huang, W. Yu, and X. Li, “Effects of p75 neurotrophin receptor on regulating hypoxia-induced angiogenic factors in retinal pigment epithelial cells,” Molecular and Cellular Biochemistry, vol. 398, no. 1-2, pp. 123–134, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Rezzola, M. Dal Monte, M. Belleri et al., “Therapeutic potential of anti-angiogenic multitarget N,O-sulfated E. coli K5 polysaccharide in diabetic retinopathy,” Diabetes, vol. 64, no. 7, pp. 2581–2592, 2015. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Dal Monte, S. Rezzola, M. Cammalleri et al., “Antiangiogenic effectiveness of the urokinase receptor-derived peptide UPARANT in a model of oxygen-induced retinopathy,” Investigative Ophthalmology & Visual Science, vol. 56, no. 4, pp. 2392–2407, 2015. View at Publisher · View at Google Scholar · View at Scopus
  119. B. H. Kim, J. Lee, J. S. Choi et al., “Imidazole-based alkaloid derivative LCB54-0009 suppresses ocular angiogenesis and lymphangiogenesis in models of experimental retinopathy and corneal neovascularization,” British Journal of Pharmacology, vol. 172, no. 15, pp. 3875–3889, 2015. View at Publisher · View at Google Scholar · View at Scopus
  120. K. S. Kim, J. M. Park, T. Kong et al., “Retinal angiogenesis effects of TGF-beta1 and paracrine factors secreted from human placental stem cells in response to a pathological environment,” Cell Transplantation, vol. 25, no. 6, pp. 1145–1157, 2016. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Zhu, W. Tan, A. M. Demetriades et al., “Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization,” Immunology, vol. 147, no. 4, pp. 414–428, 2016. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. M. Lee, Y. R. Lee, C. S. Kim et al., “Cnidium officinale extract and butylidenephthalide inhibits retinal neovascularization in vitro and in vivo,” BMC Complementary and Alternative Medicine, vol. 16, p. 231, 2016. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Hajmousa, A. A. Elorza, V. J. Nies, E. L. Jensen, R. A. Nagy, and M. C. Harmsen, “Hyperglycemia induces bioenergetic changes in adipose-derived stromal cells while their pericytic function is retained,” Stem Cells and Development, vol. 25, no. 19, pp. 1444–1453, 2016. View at Publisher · View at Google Scholar · View at Scopus
  124. G. Yiu, E. Tieu, A. T. Nguyen, B. Wong, and Z. Smit-McBride, “Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease,” Investigative Ophthalmology & Visual Science, vol. 57, no. 13, pp. 5490–5497, 2016. View at Publisher · View at Google Scholar · View at Scopus
  125. J. Guo, M. Linetsky, A. O. Yu et al., “4-Hydroxy-7-oxo-5-heptenoic acid lactone induces angiogenesis through several different molecular pathways,” Chemical Research in Toxicology, vol. 29, no. 12, pp. 2125–2135, 2016. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Q. Xiong, H. B. Jiang, Y. X. Li et al., “Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis,” Molecular Vision, vol. 22, pp. 1375–1386, 2016. View at Google Scholar
  127. D. Chen, J. Tang, Q. Wan et al., “E-Prostanoid 3 receptor mediates sprouting angiogenesis through suppression of the protein kinase A/beta-catenin/Notch pathway,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 37, no. 5, pp. 856–866, 2017. View at Publisher · View at Google Scholar
  128. F. Bucher, D. Zhang, E. Aguilar et al., “Antibody-mediated inhibition of Tspan12 ameliorates vasoproliferative retinopathy through suppression of beta-catenin signaling,” Circulation, vol. 136, 2017. View at Publisher · View at Google Scholar
  129. C. Spencer, S. Abend, K. J. McHugh, and M. Saint-Geniez, “Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium,” Journal of Cellular and Molecular Medicine, 2017. View at Publisher · View at Google Scholar
  130. S. Johnen, Y. Djalali-Talab, O. Kazanskaya et al., “Antiangiogenic and neurogenic activities of sleeping beauty-mediated PEDF-transfected RPE cells in vitro and in vivo,” BioMed Research International, vol. 2015, Article ID 863845, 14 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  131. R. Madonna, G. Giovannelli, P. Confalone, F. V. Renna, Y. J. Geng, and R. De Caterina, “High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy,” Cardiovascular Diabetology, vol. 15, p. 18, 2016. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Spuul, T. Daubon, B. Pitter et al., “VEGF-A/Notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis,” Cell Reports, vol. 17, no. 2, pp. 484–500, 2016. View at Publisher · View at Google Scholar · View at Scopus
  133. M. J. Siemerink, M. R. Hughes, M. G. Dallinga et al., “CD34 promotes pathological epi-retinal neovascularization in a mouse model of oxygen-induced retinopathy,” PLoS One, vol. 11, no. 6, article e0157902, 2016. View at Publisher · View at Google Scholar · View at Scopus
  134. G. Kaur and J. M. Dufour, “Cell lines: valuable tools or useless artifacts,” Spermatogenesis, vol. 2, no. 1, pp. 1–5, 2012. View at Publisher · View at Google Scholar
  135. C. Pan, C. Kumar, S. Bohl, U. Klingmueller, and M. Mann, “Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions,” Molecular & Cellular Proteomics, vol. 8, no. 3, pp. 443–450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. H. J. Park, Y. Zhang, S. P. Georgescu, K. L. Johnson, D. Kong, and J. B. Galper, “Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis,” Stem Cell Reviews, vol. 2, no. 2, pp. 93–102, 2006. View at Publisher · View at Google Scholar
  137. B. Baudin, A. Bruneel, N. Bosselut, and M. Vaubourdolle, “A protocol for isolation and culture of human umbilical vein endothelial cells,” Nature Protocols, vol. 2, no. 3, pp. 481–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. P. D. Bowman, A. L. Betz, and G. W. Goldstein, “Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum,” In Vitro, vol. 18, no. 7, pp. 626–632, 1982. View at Publisher · View at Google Scholar · View at Scopus
  139. P. A. D’Amore, B. M. Glaser, S. K. Brunson, and A. H. Fenselau, “Angiogenic activity from bovine retina: partial purification and characterization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 5, pp. 3068–3072, 1981. View at Google Scholar
  140. H. L. Deissler, H. Deissler, and G. E. Lang, “Actions of bevacizumab and ranibizumab on microvascular retinal endothelial cells: similarities and differences,” The British Journal of Ophthalmology, vol. 96, no. 7, pp. 1023–1028, 2012. View at Publisher · View at Google Scholar · View at Scopus
  141. A. S. Bharadwaj, B. Appukuttan, P. A. Wilmarth et al., “Role of the retinal vascular endothelial cell in ocular disease,” Progress in Retinal and Eye Research, vol. 32, pp. 102–180, 2013. View at Publisher · View at Google Scholar · View at Scopus
  142. Y. Wang, S. Wang, and N. Sheibani, “Enhanced proangiogenic signaling in thrombospondin-1-deficient retinal endothelial cells,” Microvascular Research, vol. 71, no. 3, pp. 143–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Tang, E. A. Scheef, Z. Gurel, C. M. Sorenson, C. R. Jefcoate, and N. Sheibani, “CYP1B1 and endothelial nitric oxide synthase combine to sustain proangiogenic functions of endothelial cells under hyperoxic stress,” American Journal of Physiology. Cell Physiology, vol. 298, no. 3, pp. C665–C678, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Jiang, W. Hu, H. Meng, H. Gao, and X. Qiao, “Loss of VLDL receptor activates retinal vascular endothelial cells and promotes angiogenesis,” Investigative Ophthalmology & Visual Science, vol. 50, no. 2, pp. 844–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. G. Zhang, R. G. Fahmy, N. diGirolamo, and L. M. Khachigian, “JUN siRNA regulates matrix metalloproteinase-2 expression, microvascular endothelial growth and retinal neovascularisation,” Journal of Cell Science, vol. 119, Part 15, pp. 3219–3226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Jiang, H. Gao, M. R. Kelley, and X. Qiao, “Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo,” Vision Research, vol. 51, no. 1, pp. 93–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. C. S. Boosani, N. Nalabothula, V. Munugalavadla et al., “FAK and p38-MAP kinase-dependent activation of apoptosis and caspase-3 in retinal endothelial cells by alpha1(IV)NC1,” Investigative Ophthalmology & Visual Science, vol. 50, no. 10, pp. 4567–4575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Li, L. Li, Z. Li et al., “Tat PTD-Endostatin-RGD: a novel protein with anti-angiogenesis effect in retina via eye drops,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1860, no. 10, pp. 2137–2147, 2016. View at Publisher · View at Google Scholar · View at Scopus
  149. T. Zhu, F. Sennlaub, M. H. Beauchamp et al., “Proangiogenic effects of protease-activated receptor 2 are tumor necrosis factor-alpha and consecutively Tie2 dependent,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 4, pp. 744–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Rungger-Brandle, A. A. Dosso, and P. M. Leuenberger, “Glial reactivity, an early feature of diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 41, no. 7, pp. 1971–1980, 2000. View at Google Scholar
  151. A. Bringmann, T. Pannicke, J. Grosche et al., “Muller cells in the healthy and diseased retina,” Progress in Retinal and Eye Research, vol. 25, no. 4, pp. 397–424, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. M. I. Dorrell, E. Aguilar, R. Jacobson et al., “Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy,” Glia, vol. 58, no. 1, pp. 43–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Watanabe, N. Morisaki, M. Tezuka et al., “Cultured retinal pericytes stimulate in vitro angiogenesis of endothelial cells through secretion of a fibroblast growth factor-like molecule,” Atherosclerosis, vol. 130, no. 1-2, pp. 101–107, 1997. View at Publisher · View at Google Scholar · View at Scopus
  154. E. Beltramo, T. Lopatina, E. Berrone et al., “Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro,” Acta Diabetologica, vol. 51, no. 6, pp. 1055–1064, 2014. View at Publisher · View at Google Scholar · View at Scopus
  155. D. T. Shima, A. P. Adamis, N. Ferrara et al., “Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen,” Molecular Medicine, vol. 1, no. 2, pp. 182–193, 1995. View at Google Scholar
  156. A. L. Magnussen, E. S. Rennel, J. Hua et al., “VEGF-A165b is cytoprotective and antiangiogenic in the retina,” Investigative Ophthalmology & Visual Science, vol. 51, no. 8, pp. 4273–4281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Xu and M. Chen, “Diabetic retinopathy and dysregulated innate immunity,” Vision Research, 2017. View at Publisher · View at Google Scholar
  158. X. Gao, Y. S. Wang, X. Q. Li et al., “Macrophages promote vasculogenesis of retinal neovascularization in an oxygen-induced retinopathy model in mice,” Cell and Tissue Research, vol. 364, no. 3, pp. 599–610, 2016. View at Publisher · View at Google Scholar · View at Scopus
  159. K. Kataoka, K. M. Nishiguchi, H. Kaneko, N. van Rooijen, S. Kachi, and H. Terasaki, “The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization,” Investigative Ophthalmology & Visual Science, vol. 52, no. 3, pp. 1431–1438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. J. V. Forrester, A. Chapman, C. Kerr, J. Roberts, W. R. Lee, and J. M. Lackie, “Bovine retinal explants cultured in collagen gels. A model system for the study of proliferative retinopathy,” Archives of Ophthalmology, vol. 108, no. 3, pp. 415–420, 1990. View at Publisher · View at Google Scholar · View at Scopus
  161. H. C. Chen, “Boyden chamber assay,” Methods in Molecular Biology, vol. 294, pp. 15–22, 2005. View at Publisher · View at Google Scholar
  162. L. G. Rodriguez, X. Wu, and J. L. Guan, “Wound-healing assay,” Methods in Molecular Biology, vol. 294, pp. 23–29, 2005. View at Publisher · View at Google Scholar
  163. S. Kondo, Y. Tang, E. A. Scheef, N. Sheibani, and C. M. Sorenson, “Attenuation of retinal endothelial cell migration and capillary morphogenesis in the absence of bcl-2,” American Journal of Physiology - Cell Physiology, vol. 294, no. 6, pp. C1521–C1530, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. W. Falk, R. H. Goodwin Jr., and E. J. Leonard, “A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration,” Journal of Immunological Methods, vol. 33, no. 3, pp. 239–247, 1980. View at Publisher · View at Google Scholar · View at Scopus
  165. K. I. Hulkower and R. L. Herber, “Cell migration and invasion assays as tools for drug discovery,” Pharmaceutics, vol. 3, no. 1, pp. 107–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. D. Cadena-Herrera, J. E. Esparza-De Lara, N. D. Ramírez-Ibañez et al., “Validation of three viable-cell counting methods: manual, semi-automated, and automated,” Biotechnology Reports, vol. 7, pp. 9–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Messele, M. T. Roos, D. Hamann et al., “Nonradioactive techniques for measurement of in vitro T-cell proliferation: alternatives to the [3H]thymidine incorporation assay,” Clinical and Diagnostic Laboratory Immunology, vol. 7, no. 4, pp. 687–692, 2000. View at Publisher · View at Google Scholar · View at Scopus
  168. C. Y. Weng, P. C. Kothary, A. J. Verkade, D. M. Reed, and M. A. Del Monte, “MAP kinase pathway is involved in IGF-1-stimulated proliferation of human retinal pigment epithelial cells (hRPE),” Current Eye Research, vol. 34, no. 10, pp. 867–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. K. Zaniolo, P. Sapieha, Z. Shao et al., “Ghrelin modulates physiologic and pathologic retinal angiogenesis through GHSR-1a,” Investigative Ophthalmology & Visual Science, vol. 52, no. 8, pp. 5376–5386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  170. B. L. Cavanagh, T. Walker, A. Norazit, and A. C. Meedeniya, “Thymidine analogues for tracking DNA synthesis,” Molecules, vol. 16, no. 9, pp. 7980–7993, 2011. View at Publisher · View at Google Scholar · View at Scopus
  171. D. Gomez and N. C. Reich, “Stimulation of primary human endothelial cell proliferation by IFN,” Journal of Immunology, vol. 170, no. 11, pp. 5373–5381, 2003. View at Publisher · View at Google Scholar
  172. M. Ginouves, B. Carme, P. Couppie, and G. Prevot, “Comparison of tetrazolium salt assays for evaluation of drug activity against Leishmania spp,” Journal of Clinical Microbiology, vol. 52, no. 6, pp. 2131–2138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  173. Y. Yan, T. He, Y. Shen et al., “Adenoviral 15-lipoxygenase-1 gene transfer inhibits hypoxia-induced proliferation of retinal microvascular endothelial cells in vitro,” International Journal of Ophthalmology, vol. 5, no. 5, pp. 562–569, 2012. View at Publisher · View at Google Scholar · View at Scopus
  174. G. H. Zhang, R. Qin, S. H. Zhang, and H. Zhu, “Effects of vascular endothelial growth factor B on proliferation and migration in EA.Hy926 cells,” Molecular Biology Reports, vol. 41, no. 2, pp. 779–785, 2014. View at Publisher · View at Google Scholar · View at Scopus
  175. M. DeNiro, O. Alsmadi, and F. Al-Mohanna, “Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis,” Experimental Eye Research, vol. 89, no. 5, pp. 700–717, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. S. N. Rampersad, “Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays,” Sensors (Basel), vol. 12, no. 9, pp. 12347–12360, 2012. View at Publisher · View at Google Scholar · View at Scopus
  177. I. Arnaoutova, J. George, H. K. Kleinman, and G. Benton, “The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art,” Angiogenesis, vol. 12, no. 3, pp. 267–274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Auerbach, R. Lewis, B. Shinners, L. Kubai, and N. Akhtar, “Angiogenesis assays: a critical overview,” Clinical Chemistry, vol. 49, no. 1, pp. 32–40, 2003. View at Google Scholar
  179. Y. Kubota, H. K. Kleinman, G. R. Martin, and T. J. Lawley, “Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures,” The Journal of Cell Biology, vol. 107, no. 4, pp. 1589–1598, 1988. View at Google Scholar
  180. T. J. Lawley and Y. Kubota, “Induction of morphologic differentiation of endothelial cells in culture,” The Journal of Investigative Dermatology, vol. 93, 2 Supplement, pp. 59s–61s, 1989. View at Google Scholar
  181. C. S. Hughes, L. M. Postovit, and G. A. Lajoie, “Matrigel: a complex protein mixture required for optimal growth of cell culture,” Proteomics, vol. 10, no. 9, pp. 1886–1890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. T. Korff and H. G. Augustin, “Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation,” The Journal of Cell Biology, vol. 143, no. 5, pp. 1341–1352, 1998. View at Publisher · View at Google Scholar · View at Scopus
  183. S. Dimmeler and A. M. Zeiher, “Endothelial cell apoptosis in angiogenesis and vessel regression,” Circulation Research, vol. 87, no. 6, pp. 434–439, 2000. View at Publisher · View at Google Scholar
  184. I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995. View at Publisher · View at Google Scholar
  185. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. M. Archana, T. L. Yogesh, and K. L. Kumaraswamy, “Various methods available for detection of apoptotic cells—a review,” Indian Journal of Cancer, vol. 50, no. 3, pp. 274–283, 2013. View at Publisher · View at Google Scholar · View at Scopus
  187. A. Hasan, N. Pokeza, L. Shaw et al., “The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy,” The Journal of Biological Chemistry, vol. 286, no. 11, pp. 9542–9554, 2011. View at Publisher · View at Google Scholar · View at Scopus
  188. L. Claesson-Welsh, “Vascular permeability—the essentials,” Upsala Journal of Medical Sciences, vol. 120, no. 3, pp. 135–143, 2015. View at Publisher · View at Google Scholar · View at Scopus
  189. S. F. Rymo, H. Gerhardt, F. Wolfhagen Sand, R. Lang, A. Uv, and C. Betsholtz, “A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures,” PLoS One, vol. 6, no. 1, article e15846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. V. Jhanji, H. Liu, K. Law et al., “Isoliquiritigenin from licorice root suppressed neovascularisation in experimental ocular angiogenesis models,” The British Journal of Ophthalmology, vol. 95, no. 9, pp. 1309–1315, 2011. View at Publisher · View at Google Scholar · View at Scopus
  191. R. M. Knott, M. Robertson, E. Muckersie et al., “A model system for the study of human retinal angiogenesis: activation of monocytes and endothelial cells and the association with the expression of the monocarboxylate transporter type 1 (MCT-1),” Diabetologia, vol. 42, no. 7, pp. 870–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  192. S. Kaempf, P. Walter, A. K. Salz, and G. Thumann, “Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium,” Journal of Neuroscience Methods, vol. 173, no. 1, pp. 47–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Kaempf, S. Johnen, A. K. Salz, A. Weinberger, P. Walter, and G. Thumann, “Effects of bevacizumab (Avastin) on retinal cells in organotypic culture,” Investigative Ophthalmology & Visual Science, vol. 49, no. 7, pp. 3164–3171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. M. Luke, K. Januschowski, A. Tura et al., “Effects of pegaptanib sodium on retinal function in isolated perfused vertebrate retina,” Current Eye Research, vol. 35, no. 3, pp. 248–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. M. Luke, K. Januschowski, J. Lüke et al., “The effects of ranibizumab (Lucentis) on retinal function in isolated perfused vertebrate retina,” The British Journal of Ophthalmology, vol. 93, no. 10, pp. 1396–1400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. T. Murakami, K. Suzuma, H. Takagi et al., “Time-lapse imaging of vitreoretinal angiogenesis originating from both quiescent and mature vessels in a novel ex vivo system,” Investigative Ophthalmology & Visual Science, vol. 47, no. 12, pp. 5529–5536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  197. N. Unoki, T. Murakami, K. Ogino, M. Nukada, and N. Yoshimura, “Time-lapse imaging of retinal angiogenesis reveals decreased development and progression of neovascular sprouting by anecortave desacetate,” Investigative Ophthalmology & Visual Science, vol. 51, no. 5, pp. 2347–2355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. K. Takeuchi, R. Yanai, F. Kumase et al., “EGF-like-domain-7 is required for VEGF-induced Akt/ERK activation and vascular tube formation in an ex vivo angiogenesis assay,” PLoS One, vol. 9, no. 3, article e91849, 2014. View at Publisher · View at Google Scholar · View at Scopus
  199. S. Sawamiphak, M. Ritter, and A. Acker-Palmer, “Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses,” Nature Protocols, vol. 5, no. 10, pp. 1659–1665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Amato, M. Biagioni, M. Cammalleri, M. Dal Monte, and G. Casini, “VEGF as a survival factor in ex vivo models of early diabetic retinopathy,” Investigative Ophthalmology & Visual Science, vol. 57, no. 7, pp. 3066–3076, 2016. View at Publisher · View at Google Scholar · View at Scopus
  201. A. F. O. Moleiro, “How to study retinal angiogenesis - in vitro methods,” - [-] 2017 2017 [cited 2017 07-07-2017]; [Review] 2017, http://hdl.handle.net/10216/104136.
  202. A. B. Theberge, J. Yu, E. W. Young, W. A. Ricke, W. Bushman, and D. J. Beebe, “Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis,” Analytical Chemistry, vol. 87, no. 6, pp. 3239–3246, 2015. View at Publisher · View at Google Scholar · View at Scopus