Table of Contents Author Guidelines Submit a Manuscript
Journal of Ophthalmology
Volume 2017, Article ID 7136275, 14 pages
https://doi.org/10.1155/2017/7136275
Review Article

High-Intensity Focused Ultrasound Circular Cyclocoagulation in Glaucoma: A Step Forward for Cyclodestruction?

1Moorfields Eye Hospital, London EC1V 2PD, UK
2Ophthalmology Clinic, Department of Medicine and Ageing Science, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
3Ophthalmology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

Correspondence should be addressed to Luca Agnifili; ti.hcinu@ilifinga.l

Received 31 October 2016; Revised 28 January 2017; Accepted 20 February 2017; Published 23 April 2017

Academic Editor: Paul Harasymowycz

Copyright © 2017 Rodolfo Mastropasqua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. E. Kim, J. W. Jeoung, D. M. Kim, S. J. Ahn, K. H. Park, and S. H. Kim, “Long-term follow-up in preperimetric open-angle glaucoma: progression rates and associated factors,” American Journal of Ophthalmology, vol. 159, no. 1, pp. 160–168, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Leske, A. Heijl, L. Hyman et al., “Predictors of long-term progression in the early manifest glaucoma trial,” Ophthalmology, vol. 114, no. 11, pp. 1965–1972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Mastrobattista and M. Luntz, “Ciliary body ablation: where are we and how did we get here?” Survey of Ophthalmology, vol. 41, no. 3, pp. 193–213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. A. De Roetth Jr, “Cryosurgery for the treatment of glaucoma,” Transactions of the American Ophthalmological Society, vol. 63, no. 3, pp. 189–204, 1965. View at Google Scholar
  5. O. Kosoko, D. E. Gaasterland, I. P. Pollack, and C. L. Enger, “Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group,” Ophthalmology, vol. 103, no. 8, pp. 1294–1302, 1993. View at Google Scholar
  6. S. A. Vernon, J. M. Koppens, G. J. Menon, and A. K. Negi, “Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature,” Clinical and Experimental Ophthalmology, vol. 34, no. 5, pp. 411–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. T. Finger, P. D. Smith, R. W. Paglione, and H. D. Perry, “Transscleral microwave cyclodestruction,” Investigative Ophthalmology & Visual Science, vol. 31, no. 10, pp. 2151–2155, 1990. View at Google Scholar
  8. M. Maus and L. J. Katz, “Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium: YAG laser cyclophotocoagulation,” Ophthalmology, vol. 97, no. 1, pp. 69–72, 1990. View at Publisher · View at Google Scholar
  9. D. J. Coleman, F. L. Lizzi, R. H. Silverman et al., “Therapeutic ultrasound,” Ultrasound in Medicine & Biology, vol. 12, no. 8, pp. 633–638, 1986. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Valtot, J. Kopel, and J. Haut, “Treatment of glaucoma with high intensity focused ultrasound,” International Ophthalmology, vol. 13, no. 1-2, pp. 167–170, 1989. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Coleman, F. L. Lizzi, J. Driller et al., “Therapeutic ultrasound in the treatment of glaucoma: I. experimental model,” Ophthalmology, vol. 92, no. 3, pp. 339–346, 1985. View at Publisher · View at Google Scholar
  12. D. J. Coleman, F. L. Lizzi, J. Driller et al., “Therapeutic ultrasound in the treatment of glaucoma: II. Clinical applications,” Ophthalmology, vol. 92, no. 3, pp. 347–353, 1985. View at Publisher · View at Google Scholar
  13. S. E. Burgess, R. H. Silverman, D. J. Coleman et al., “Treatment of glaucoma with high-intensity focused ultrasound,” Ophthalmology, vol. 93, no. 6, pp. 831–838, 1986. View at Publisher · View at Google Scholar
  14. S. L. Maskin, A. I. Mandell, J. A. Smith, R. C. Wood, and S. A. Terry, “Therapeutic ultrasound for refractory glaucoma: a three-center study,” Ophthalmic Surgery, vol. 20, no. 3, pp. 86–192, 1989. View at Google Scholar
  15. C. C. Sterk, P. H. van der Valk, C. L. van Hees, J. L. van Delft, J. A. van Best, and J. A. Oosterhuis, “The effect of therapeutic ultrasound on the average of multiple intraocular pressures throughout the day in therapy-resistant glaucoma,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 227, no. 1, pp. 36–38, 1989. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Aptel, T. Charrel, C. Lafon et al., “Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study,” Investigative Ophthalmology & Visual Science, vol. 52, no. 12, pp. 8747–8753, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Denis, F. Aptel, J. F. Rouland et al., “Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study,” Investigative Ophthalmology & Visual Science, vol. 56, no. 2, pp. 1089–1096, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Aptel, C. Dupuy, and J. F. Rouland, “Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series,” Current Medical Research and Opinion, vol. 30, no. 8, pp. 1599–1605, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Aptel, T. Charrel, X. Palazzi, J. Y. Chapelon, P. Denis, and C. Lafon, “Histologic effects of a new device for high-intensity focused ultrasound cyclocoagulation,” Investigative Ophthalmology & Visual Science, vol. 51, no. 10, pp. 5092–5098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. M. Abdelrahman, “Noninvasive glaucoma procedures: current options and future innovations,” Middle East African Journal of Ophthalmology, vol. 22, no. 1, pp. 2–9, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Melamed, M. Goldenfeld, D. Cotlear, A. Skaat, and I. Moroz, “High-intensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study,” European Journal of Ophthalmology, vol. 25, no. 6, pp. 483–489, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. F. H. Verhoeff, “Cyclectomy. A new operation for glaucoma,” Archives of Ophthalmology, vol. 33, pp. 228–229, 1924. View at Google Scholar
  23. H. Sauter and U. Demeler, “Antiglaucomatous ciliary body excision,” American Journal of Ophthalmology, vol. 98, no. 3, pp. 344–348, 1984. View at Publisher · View at Google Scholar
  24. H. Weve, “Clinische lessen,” Nederlands Tijdschrift voor Geneeskunde, vol. 76, pp. 5335–5336, 1932. View at Google Scholar
  25. A. Vogt, “Cyclodiathermy puncture in cases of glaucoma,” The British Journal of Ophthalmology, vol. 24, pp. 288–297, 1940. View at Publisher · View at Google Scholar
  26. F. W. Stocker, “Response of chronic simple glaucoma to treatment with cyclodiathermy puncture,” Archives of Ophthalmology, vol. 34, no. 3, pp. 181–189, 1945. View at Publisher · View at Google Scholar
  27. U. S. Walton and W. M. Grant, “Penetrating cyclodiathermy for filtration,” Archives of Ophthalmology, vol. 83, no. 1, pp. 47–48, 1970. View at Publisher · View at Google Scholar · View at Scopus
  28. M. T. Benson and M. E. Nelson, “Cyclocryotherapy: a review of cases over a 10-year period,” The British Journal of Ophthalmology, vol. 74, no. 2, pp. 103–105, 1990. View at Publisher · View at Google Scholar
  29. A. R. Bellows and W. M. Grant, “Cyclocryotherapy of chronic open angle glaucoma in aphakic eyes,” American Journal of Ophthalmology, vol. 85, no. 5 pt 1, pp. 615–621, 1978. View at Google Scholar
  30. B. S. Kim, Y. J. Kim, S. W. Seo, J. M. Yoo, and S. J. Kim, “Long-term results from cyclocryotherapy applied to the 3 o’clock and 9 o’clock positions in blind refractory glaucoma patients,” Korean Journal of Ophthalmology, vol. 29, no. 1, pp. 47–52, 2015. View at Publisher · View at Google Scholar
  31. P. Sony, N. Sharma, and M. S. Pangtey, “Dislocation of the lens: a complication after cyclocryotherapy,” Clinical and Experimental Ophthalmology, vol. 30, no. 6, pp. 442–443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Freigassner and M. Eckhardt, “Transscleral cyclophotocoagulation versus cyclocryotherapy in treatment of neovascular glaucoma: a retrospective analysis,” Acta Ophthalmologica Scandinavica, vol. 81, no. 6, pp. 674–675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Koraszewska-Matuszewska, R. Leszczyński, E. Samochowiec-Donocik, and L. Nawrocka, “Cyclodestructive procedures in secondary glaucoma in children,” Klinika Oczna, vol. 106, Supplement 1-2, pp. 199–200, 2004. View at Google Scholar
  34. A. Sinha and A. Rahman, “Cyclocryotherapy in absolute glaucoma,” Indian Journal of Ophthalmology, vol. 32, no. 2, pp. 77–80, 1984. View at Google Scholar
  35. R. M. Feibel and J. E. Bigger, “Rubeosis iridis and neovascular glaucoma,” American Journal of Ophthalmology, vol. 74, no. 5, pp. 862–867, 1972. View at Publisher · View at Google Scholar
  36. T. Krupin, K. B. Mitchell, and B. Becker, “Cyclocryotherapy in neovascular glaucoma,” American Journal of Ophthalmology, vol. 86, no. 1, pp. 24–26, 1978. View at Publisher · View at Google Scholar
  37. J. Fanlborn and K. Hiister, “Ergebnisse der Zyklokryorherapir beim hamorrhagischen Glxrkorn,” Klinische Monatsblätter für Augenheilkunde, vol. 162, pp. 513–518, 1973. View at Google Scholar
  38. L. W. Schwartz and M. R. Moster, “Neodymium:YAG laser transscleral cyclodiathermy,” Ophthalmic Laser Therapy, vol. 1, no. 3, pp. 135–141, 1986. View at Google Scholar
  39. G. E. Trope and S. Ma, “Mid-term effects of neodimium:YAG transscleral cyclocoagulation in glaucoma,” Ophthalmology, vol. 97, no. 1, pp. 73–75, 1990. View at Publisher · View at Google Scholar
  40. K. S. Suresha and M. Narayan, “Cyclo-cryotherapy for the management of absolute glaucoma in rural areas,” Indian Journal of Clinical and Experimental Ophthalmology, vol. 2, no. 1, pp. 48–45, 2016. View at Google Scholar
  41. S. Lam, H. H. Tessler, B. I. La, and J. T. Wilensky, “High incidence of sympathetic ophthalmia after contact and non-contact neodymiun:YAG cyclotherapy,” Ophthalmology, vol. 99, no. 12, pp. 1818–1819, 1992. View at Publisher · View at Google Scholar
  42. R. G. Gieser and D. K. Gieser, “Treatment of intravitreal ciliary body neovascularization,” Ophthalmic Surgery, vol. 15, no. 6, pp. 508–509, 1984. View at Google Scholar
  43. M. B. Shields, “Intraocular cyclophotocoagulation,” Transactions of the Ophthalmological Societies of the United Kingdom, vol. 105, no. Pt. 2, pp. 237–241, 1986. View at Google Scholar
  44. M. B. Shields, D. B. Chandler, D. Hickingbotharn, and G. K. Klintworth, “Intraocular cyclophotocoagulation. Histopathologic evaluation in primates,” Archives of Ophthalmology, vol. 103, no. 11, pp. 1731–1735, 1985. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Vogel, C. Dlugos, R. Nuffer, and R. Birngruber, “Optical properties of human sclera and their significance for transscleral laser use,” Fortschritte Der Ophthalmologie, vol. 88, no. 6, pp. 754–761, 1991. View at Google Scholar
  46. A. L. Coleman, H. D. Jampel, J. C. Javitt, A. E. Brown, and H. A. Quigley, “Transscleral cyclophotocoagulation of human autopsy and monkey eyes,” Ophthalmic Surgery, vol. 22, no. 11, pp. 638–643, 1991. View at Google Scholar
  47. C. England, E. van der Zypen, F. Fankhauser, and S. Kwasniewska, “Ultrastructure of the rabbit ciliary body following transscleral cyclophotocoagulation with the free-running Nd:YAG laser: preliminary findings,” Lasers in ophthalmology, vol. 1, pp. 61–72, 1986. View at Google Scholar
  48. L. F. Rosenberg, J. M. Ruderman, and R. B. O’Grady, “Transscleral cyclophotocoagulation. Localization of ciliary process destruction (abstract),” Investigative Ophthalmology & Visual Science, vol. 30, Supplement, pp. 353–356, 1989. View at Google Scholar
  49. F. Fankhauser, E. Van der Zypen, S. Kwasniewska, and H. Loertscher, “The effect of thermal mode Nd:YAG laser irradiation on vessels and ocular tissues,” Ophthalmology, vol. 92, no. 3, pp. 419–426, 1985. View at Publisher · View at Google Scholar
  50. F. Fankhauser, E. Van der Zypen, S. Kwasniewska, P. Rol, and C. England, “Transscleral cyclophotocoagulation using a neodymium:YAG laser,” Ophthalmic Surgery, vol. 17, no. 2, pp. 94–99, 1986. View at Google Scholar
  51. T. A. Ilawkins and W. C. Stewart, “One-year results of semiconductor transscleral cyclophotocoagulation in patients with glaucoma,” Archives of Ophthalmology, vol. 111, no. 4, pp. 488–491, 1993. View at Google Scholar
  52. M. D. Shields and S. E. Shields, “Non-contact transscleral Nd:YAG cyclophotocoagulation – a long term follow-up of 500 patients,” Transactions of the American Ophthalmological Society, vol. 92, pp. 271–283, 1994. View at Google Scholar
  53. D. S. Minckler, “Does Nd:YAG cyclotherapy cause sympathetic ophthalmia?” Ophthalmic Surgery, vol. 20, no. 8, p. 543, 1989. View at Google Scholar
  54. M. A. Latina, S. Patel, A. W. de Kater, S. Goode, N. S. Nishioka, and C. A. Puliafito, “Transscleral cyclophotocoagulation using a contact laser probe: a histologic and clinical study in rabbits,” Lasers in Surgery and Medicine, vol. 9, no. 5, pp. 465–470, 1989. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Schuman, C. A. Puliafito, R. R. Allingham et al., “Contact transscleral Nd:YAG laser cyclophotocoagulation,” Ophthalmology, vol. 97, no. 5, pp. 571–580, 1990. View at Publisher · View at Google Scholar
  56. R. Brancato, L. Giovanni, G. Trabbuchi, and C. Pietroni, “Contact transscleral cyclophotocoagulation with Nd:YAG laser in uncontrolled glaucoma,” Ophthalmic Surgery, vol. 20, no. 8, pp. 547–551, 1989. View at Google Scholar
  57. P. Lin, G. Wollstein, I. P. Glavas, and J. S. Schuman, “Contact transscleral neodymium:yttrium-aluminum-garnet laser cyclophotocoagulation: long-term outcome,” Ophthalmology, vol. 111, no. 11, pp. 2137–2143, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. J. S. Lai, C. C. Tham, J. C. Chan, and D. S. Lam, “Diode laser transscleral cyclophotocoagulation as primary surgical treatment for medically uncontrolled chronic angle closure glaucoma: long-term clinical outcomes,” Journal of Glaucoma, vol. 14, no. 2, pp. 114–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. P. A. Bloom, C. I. Clement, A. King et al., “A comparison between tube surgery, ND:YAG laser and diode laser cyclophotocoagulation in the management of refractory glaucoma,” BioMed Research International, vol. 2013, Article ID 371951, p. 11, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. C. J. Dickens, N. Nguyen, J. S. Mora et al., “Long-term results of noncontact transscleral neodymium:YAG cyclophotocoagulation,” Ophthalmology, vol. 102, no. 12, pp. 1771–1781, 1995. View at Google Scholar
  61. M. Grueb, J. M. Rohrbach, K. U. Bartz-Schmidt, and T. Schlote, “Transscleral diode laser cyclophotocoagulation as primary and secondary surgical treatment in primary open-angle and pseudoexfoliative glaucoma. Long-term clinical outcomes,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 10, pp. 1293–1299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Frezzotti, V. Mittica, G. Martone et al., “Long term follow-up of diode laser transscleral cyclophotocoagulation in the treatment of refractory glaucoma,” Acta Ophthalmologica, vol. 88, no. 1, pp. 150–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Schlote, M. Grüb, and M. Kynigopoulos, “Long-term results after transscleral diode laser cyclophotocoagulation in refractory posttraumatic glaucoma and glaucoma in aphakia,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 3, pp. 405–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Shah, G. A. Lee, J. K. Kirwan et al., “Cyclodiode photocoagulation for refractory glaucoma after penetrating keratoplasty,” Ophthalmology, vol. 108, no. 11, pp. 1986–1991, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Hampton, M. B. Shields, K. N. Miller, and M. Blasini, “Evaluation of a protocol for transscleral neodymium:YAG Cyclophotocoagulation in one hundred patients,” Ophthalmology, vol. 97, no. 7, pp. 910–917, 1990. View at Google Scholar
  66. P. Hamard, J. Kopel, F. Valtot, S. Quesnot, H. Hamard, and J. Haut, “Treatment of refractory glaucoma by diode semiconductor laser cyclophotocoagulation,” Journal Français d'Ophtalmologie, vol. 18, no. 6-7, pp. 447–454, 1995. View at Google Scholar
  67. M. N. Cyrlin, H. Beckman, and C. Czedik, “Nd:YAG laser trans-scleral cyclocoagulation treatment for severe glaucoma (abstract),” Investigative Ophthalmology & Visual Science, vol. 26, Supplement, p. 157, 1985. View at Google Scholar
  68. R. G. Drvenyi, G. E. Trope, and W. H. Hunter, “Neodymium-YAG transscleral cyclocoagulation in rabbit eyes,” The British Journal of Ophthalmology, vol. 71, no. 6, pp. 441–444, 1987. View at Publisher · View at Google Scholar
  69. G. E. Trope and S. Ma, “Mid-term effects of Nd:YAG transscleral cyclocoagulation in glaucoma,” Ophthalmology, vol. 97, pp. 73–75, 1990. View at Publisher · View at Google Scholar
  70. M. Uram, “Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma,” Ophthalmology, vol. 99, no. 12, pp. 1823–1828, 1992. View at Publisher · View at Google Scholar
  71. K. Kaplovitz, A. Kuei, B. Klenofsky, A. Abazari, and R. Honkanen, “The use of endoscopic cyclophotocoagulation for moderate to advanced glaucoma,” Acta Ophthalmologica, vol. 93, no. 5, pp. 395–401, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. F. E. Lima, L. Magacho, D. M. Carvalho, R. Susanna Jr, and M. P. Avila, “A prospective, comparative study between endoscopic cyclophotocoagulation and the Ahmed drainage implant in refractory glaucoma,” Journal of Glaucoma, vol. 13, pp. 233–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. M. A. Zarbin, R. S. Michels, S. DeBistros, H. A. Quigley, and A. Patel, “Endolaser treatment of the ciliary body for severe glaucoma,” Ophthalmology, vol. 95, no. 12, pp. 1639–1648, 1988. View at Publisher · View at Google Scholar
  74. L. W. Yip, S. O. Yong, A. Earnest, J. Ji, and B. A. Lim, “Endoscopic cyclophotocoagulation for the treatment of glaucoma: an Asian experience,” Clinical & Experimental Ophthalmology, vol. 37, no. 7, pp. 692–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. F. E. Lima, J. Beniz Neto, D. Toscano, D. M. D. Carvalho, and M. P. D. Avila, “Endoscopic cyclophotocoagulation in refractory glaucomas: a long term study,” Revista Brasileira de Oftalmologia, vol. 68, no. 3, pp. 146–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. B. A. Francis, A. S. Kawji, N. T. Vo, L. Dustin, and V. Chopra, “Endoscopic cyclophotocoagulation (ECP) in the management of uncontrolled glaucoma with prior aqueous tube shunt,” Journal of Glaucoma, vol. 20, no. 8, pp. 523–527, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. W. J. Fry, J. W. Barnard, E. J. Fry, R. F. Krumins, and J. F. Brennan, “Ultrasonic lesions in the mammalian central nervous system,” Science, vol. 122, no. 3168, pp. 517–518, 1955. View at Publisher · View at Google Scholar
  78. J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” The Journal of General Physiology, vol. 26, no. 2, pp. 179–193, 1942. View at Publisher · View at Google Scholar
  79. K. Hynynen and B. A. Lulu, “Hyperthermia in cancer treatment,” Investigative Radiology, vol. 25, no. 7, pp. 824–834, 1990. View at Publisher · View at Google Scholar
  80. G. Baum and I. Greenwood, “The application of ultrasonic locating techniques to ophthalmology; theoretic considerations and acoustic properties of ocular media. Reflective properties,” American Journal of Ophthalmology, vol. 46, no. 5, pp. 19–29, 1958. View at Google Scholar
  81. E. W. Purnell, A. Sokollu, R. Torchia, and N. Taner, “Focal chorioretinitis produced by ultrasound,” Investigative Ophthalmology, vol. 3, no. 6, pp. 657–664, 1964. View at Google Scholar
  82. R. Muratore, “A history of the Sonocare CST-100: the first FDA-approved HIFU device,” AIP Conference Proceedings, vol. 829, no. 1, p. 508, 2006. View at Google Scholar
  83. C. E. Margo, “Therapeutic ultrasound. Light and electron microscopic findings in an eye treated for glaucoma,” Archives of Ophthalmology, vol. 104, no. 5, pp. 735–738, 1986. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Cao, Z. Xu, H. Long et al., “Trans-catheter arterial chemoembolization in combination with high-intensity focused ultrasound for unresectable hepatocellular carcinoma: a systematic review and meta-analysis of the Chinese literature,” Ultrasound in Medicine & Biology, vol. 37, no. 7, pp. 1009–1016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Crouzet, O. Rouviere, X. Martin, and A. Gelet, “High-intensity focused ultrasound as focal therapy of prostate cancer,” Current Opinion in Urology, vol. 24, no. 3, pp. 225–230, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. C. C. Li, Y. Q. Wang, Y. P. Li, and X. L. Li, “High-intensity focused ultrasound for treatment of pancreatic cancer: a systematic review,” Journal of Evidence-Based Medicine, vol. 7, no. 4, pp. 270–281, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. G. Pron, “Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) treatment of symptomatic uterine fibroids: an evidence-based analysis,” Ontario Health Technology Assessment Series, vol. 15, no. 4, pp. 1–86, 2015. View at Google Scholar
  88. R. Mastropasqua, L. Agnifili, V. Fasanella et al., “Uveo-scleral outflow pathways after ultrasonic cyclocoagulation in refractory glaucoma: an anterior segment optical coherence tomography and in vivo confocal study,” The British Journal of Ophthalmology, vol. 100, no. 12, pp. 1668–1675, 2016. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Aptel, P. Denis, J. F. Rouland, J. P. Renard, and A. Bron, “Multicenter clinical trial of high-intensity focused ultrasound treatment in glaucoma patients without previous filtering surgery,” Acta Ophthalmologica, vol. 94, no. 5, pp. e268–e277, 2016. View at Publisher · View at Google Scholar · View at Scopus
  90. D. M. Bushley, V. C. Parmley, and P. Paglen, “Visual field defect associated with laser in situ keratomileusis,” American Journal of Ophthalmology, vol. 129, no. 5, pp. 668–671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. B. D. Cameron, N. A. Saffra, and M. B. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology, vol. 108, no. 4, pp. 660–665, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Aptel, A. Béglé, A. Razavi et al., “Short- and long-term effects on the ciliary body and the aqueous outflow pathways of high-intensity focused ultrasound cyclocoagulation,” Ultrasound in Medicine & Biology, vol. 40, no. 9, pp. 2096–2106, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Agnifili, P. Carpineto, V. Fasanella et al., “Conjunctival findings in hyperbaric and low-tension glaucoma: an in vivo confocal microscopy study,” Acta Ophthalmologica, vol. 90, no. 2, pp. e132–e137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. P. Carpineto, L. Agnifili, M. Nubile et al., “Conjunctival and corneal findings in bleb-associated endophthalmitis: an in vivo confocal microscopy study,” Acta Ophthalmologica, vol. 89, no. 4, pp. 388–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Ciancaglini, P. Carpineto, L. Agnifili et al., “Conjunctival characteristics in primary open-angle glaucoma and modifications induced by trabeculectomy with mitomycin C: an in vivo confocal microscopy study,” The British Journal of Ophthalmology, vol. 93, no. 9, pp. 1204–1209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Ciancaglini, P. Carpineto, L. Agnifili, M. Nubile, V. Fasanella, and L. Mastropasqua, “Conjunctival modifications in ocular hypertension and primary open angle glaucoma: an in vivo confocal microscopy study,” Investigative Ophthalmology & Visual Science, vol. 49, no. 7, pp. 3042–3048, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Mastropasqua, L. Agnifili, M. Ciancaglini et al., “In vivo analysis of conjunctiva in gold micro shunt implantation for glaucoma,” The British Journal of Ophthalmology, vol. 94, no. 12, pp. 1592–1596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Mastropasqua, L. Agnifili, M. L. Salvetat et al., “In vivo analysis of conjunctiva in canaloplasty for glaucoma,” The British Journal of Ophthalmology, vol. 96, no. 5, pp. 634–639, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Mastropasqua, L. Agnifili, R. Mastropasqua, and V. Fasanella, “Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma,” Current Opinion in Pharmacology, vol. 13, no. 1, pp. 56–64, 2013. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Mastropasqua, V. Fasanella, E. Pedrotti et al., “Trans-conjunctival aqueous humor outflow in glaucomatous patients treated with prostaglandin analogues: an in vivo confocal microscopy study,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 252, no. 9, pp. 1469–1476, 2014. View at Publisher · View at Google Scholar · View at Scopus